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Abstract

In this research, we consider the transient, or time-domain, scattering problem

of an overfilled cavity embedded in an impedance ground plane. This problem is a

significant advancement from previous work where more simplified boundary condi-

tions were used, which can limit the number of applications. This research supports

a wide range of military applications such as the study of cavity-like structures on

aircraft and vehicles. More importantly, this research helps detect the biggest threat

on today’s battlefield: improvised explosive devices.

An important step in solving the problem is introducing an artificial boundary

condition on a semicircle enclosing the cavity; this couples the fields from the infinite

exterior domain to those fields inside. The problem is first discretized in time using

the Newmark scheme, and at each time step, we derive the variational formulation

and establish well-posedness of the problem. This sets the foundation for the finite

element method used in the numerical analysis. Using both planar and overfilled

cavity models, we provide numerical results through the depictions of the electric

field and radar cross section of the cavities.
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ANALYSIS OF TRANSIENT ELECTROMAGNETIC SCATTERING FROM AN

OVERFILLED CAVITY

EMBEDDED IN AN IMPEDANCE GROUND PLANE

I. Introduction

1.1 Motivation

The study of electromagnetic scattering of plane waves has long been an area

of great interest in the scientific community. Many analytical and computational

methods have been explored, and the various approaches to the study of scattering

problems are matched by the wide variety of applications. These include acoustics,

optics, and microwave technology, but it is particularly appropriate to the military

regarding radar applications.

At the essence of any scattering problem is the concept of the computation of

radar cross section (RCS). RCS is defined as a measure of power scattered in a given

direction when a target is illuminated by an incident wave, which helps reveal the

signature of a target [62]. This leads to efforts not only to measure and predict RCS,

but also to enhance or minimize RCS. More demands and complexities in modern

design and integration of systems require that a solid foundation exist for all types of

problems involving RCS measurements.

Intense research in this area is motivated in part by the fact that of all the con-

tributors to RCS, cavities have a significant impact on a structure’s overall signature

[5]. Many scattering geometries have been studied in the context of military applica-

tions. A common one is the cavity, and examples of cavity-like structures on aircraft

1



and vehicles are engine inlets, cracks, gaps, and cavity-backed antennas [47]. Planar

cavities representing these objects have been studied in detail, but the overfilled cav-

ity is important because it may more accurately model surfaces that include defects

and perturbations [111]. For example, this geometry is exhibited in aperture and

conformal antennas, which are designed to operate in the presence of a ground plane

[56].

For the military, though, the battlefield has evolved significantly. For example,

in today’s conflicts and engagements in Afghanistan, precision is critical not only

in identifying the enemy in challenging terrain, but also in expediting the decision

making process through positive identification of threats. One of the biggest threats

today are improvised explosive devices (IEDs). These devices are concealed or par-

tially buried in the ground and are detonated by an electronic or pressure-activated

trigger (See Figure 1). Information on IEDs is often gathered from drones and sen-

sors, which have the capability to detect ground that has been dug up and disturbed

to plant IEDs. In addition, jammers can be used to interfere and stop electronic

detonation of IEDs [74]. Consider the following facts:

The number of IED attacks that killed or wounded coalition forces in-
creased to 60 in December (2009) from 32 in December 2008. The total
number of IEDs, including those that were found before they detonated,
increased to 8,690 last year (in 2009) from 3,783 in 2008. [74]

The military has improved its ability to detect and eradicate IEDs in 2010 through

the expanding use of foot patrols, planes, drones, and balloons. This is evidenced by

a 37% decrease in troops wounded or killed by IEDs [106]. However, there still

will be a need to locate these devices in challenging terrain. Clearly, then, IEDs

exhibit the characteristics of an overfilled cavity, and their detection gives rise to a

scattering problem. In this context, it is critical to the military to understand the

2



mathematical foundation of this scattering problem that is applicable in a wide range

of environments.

Figure 1. IED Depiction [53]

Most of the published research and mathematical development for cavity-type

problems generally assumes the ground plane is a perfect electric conductor (PEC).

However, for this problem it makes sense that an imperfect conductor is more phys-

ically realistic when the surface in question is the ground, which can be represented

with an impedance boundary condition (IBC). The impedance at the surface is a mea-

surable quantity dependent on the material defined on the surface, and one would

expect this idea would give rise to more complicated expressions mathematically as

opposed to perfectly conducting surfaces [95]. An IBC might be evident on a painted

or coated surface on a plane or vehicle. It is also used to model a honeycomb or

perforated material [16]. Moreover, it is also used in approximating the ground and

objects lying on the ground (See, for example, [100]). Thus, an IBC is most appro-
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priate to model IED detection. It is the goal, then, to provide a solid mathematical

foundation for this geometry with IBCs.

Furthermore, it is critical to note that this study ties directly to the Air Force Of-

fice of Scientific Research (AFOSR) mission statement in the research area of electro-

magnetics, which is to “Conduct research in electromagnetics to . . . evaluate methods

to recognize . . . and track targets (including Improvised Explosive Devices) . . . ” [2].

Also, it falls in line with Air Force Research Laboratory (AFRL) Focused Long Term

Challenges (FLTC), specifically FLTC 3, which is “Dominant Difficult Surface Target

Engagement and Defeat,” which “is focused on the ability to deliver selectable and

scalable non-lethal or lethal effects against adversaries and/or their support activities,

IEDs . . . in an urban warfare environment” [3].

1.2 General Problem Statement

Let Ω ⊂ ℝ2 be the cross-section (cavity interior) of a z-invariant cavity in the

infinite ground plane. That is, Ω has the same definition for all values of z. We

will assume that the cavity fillings, with material of relative permittivity ("r ≥ 1),

protrude above the ground plane. We denote S as the cavity wall and Γ the cavity

aperture so that ∂Ω = S ∪Γ. The infinite ground plane excluding the cavity opening

is denoted as Γext, and the infinite homogenous, isotropic region above the cavity as

U = ℝ2
+∖Ω. Furthermore, let ℬR be a semicircle of radius R, centered at the origin and

surrounded by free space, large enough to completely enclose the overfilled portion of

the cavity. We denote the region bounded by ℬR and the cavity wall S as ΩR, so that

ΩR consists of the cavity itself and the homogeneous part between ℬR and Γ. Let UR
be the homogeneous region outside of ΩR; that is, UR = {(r, �) : r > R, 0 < � < �}.

Refer to Figure 2 for the complete problem geometry.

The problem statement is given the incident electromagnetic wave (Ei,H i) im-
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Figure 2. Problem Geometry - TM polarization depicted
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pinging on the overfilled cavity, we wish to determine the resulting scattered fields

(Es,Hs). This is a two-dimensional problem, and due to the uniformity in the z-

axis, it can be decomposed into two fundamental polarizations: transverse magnetic

(TM) and transverse electric (TE). Its solution then can be expressed as a linear

combination of the solutions to TM and TE problems.

We first consider the TM polarization problem, and the following formulation

is modeled after Van and Wood (See [105]). In this case, the magnetic field H is

transverse to the z-axis so that E and H are of the form

E = (0, 0, Ez), H = (Hx, Hy, 0).

In this case, the nonzero component of the total electric field Ez satisfies Maxwell’s

equations and the following boundary value problem (see Appendix A for derivation

of impedance boundary conditions in the time domain):

(TM)

⎧⎨⎩

−ΔEz + "r
∂2Ez
∂t2

= 0 in Ω ∪ U × (0,∞),

∂Ez
∂t

= −�
�

∂Ez
∂n

on S ∪ Γext × (0,∞),

Ez∣t=0 = E0,
∂Ez
∂t

∣∣∣∣
t=0

= Et,0 in Ω ∪ U

where "r = "/"0 is the relative electric permittivity, E0 and Et,0 are the given initial

conditions and � =
√
�r/"r is the normalized intrinsic impedance of the infinite

ground plane. We define the normal derivative
∂Ez
∂n

= ∇Ez ⋅ n̂, where n̂ is the

outward unit normal. We are assuming that we have a non-dispersive material in the

cavity, i.e.
∂"r
∂!

= 0, or that the permittivity is not a function of frequency, but could

vary with respect to position.

We observe the scattered field Es
z solves

6



⎧⎨⎩
−ΔEs

z +
∂2Es

z

∂t2
= 0 in U × (0,∞),

∂Es
z

∂t
+
�

�

∂Es
z

∂n
= −(

∂Ei
z

∂t
+
�

�

∂Ei
z

∂n
) on Γext ∪ Γ× (0,∞),

and also satisfies the radiation condition at infinity

lim
r→∞

√
r

(
∂Es

z

∂r
+

1

c

∂Es
z

∂t

)
= 0, t > 0. (1.2.1)

The homogeneous region U above the protruding cavity is assumed to be air

and hence its permittivity is "r = 1. In U , the total field can be decomposed as

Ez = Ei
z + Es

z where Ei
z is the incident field, and Es

z the scattered field.

1.3 Function Spaces and Requirements

The appropriate and relevant theorems and propositions used and cited in this

work will appear at the appropriate points in the manuscript. Nevertheless, the goal

here is to briefly discuss the motivation for the appropriate functional spaces and

numerical methods that will be used. We will use the Lebesgue scalar product,

⟨u, v⟩ =

∫
T

uv̄dT,

with ∥u∥ =
(∫

T

∣u∣2 dT
)1/2

< ∞, where T is a bounded subset of ℝ2. We refer to

these as square integrable functions.

We note that Hilbert spaces, or complete inner product spaces, are most applicable

to real-world computational schemes [107]. We will also need to deal with “function

spaces that are larger than the classes of continuous and continuously differentiable

functions” [10]. The reason is that when dealing with the differential equation in a
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numerical framework, finite element subspaces are piecewise continuous at best. Thus,

we require a less restrictive way in which to define boundedness through the space

of square integrable functions, or L2(ΩR). As previously defined, L2(ΩR) contains

sets of piecewise continuous functions used in the finite element method (FEM). To

ensure boundedness of the differential operator over the domain of square integrable

functions, the derivatives must also be square integrable, which leads to the idea of

Sobolev spaces [107]. Thus, the framework established here lends itself to numerical

methods, but more importantly, this function space will be needed for any weak

formulation of the boundary value problem [97].

We first define the Sobolev space H1(ΩR) for the bounded domain ΩR with norm:

∥u∥H1(ΩR) =
[ ∫

ΩR

(
∥u∥2 + ∥∇u∥2 )]1/2

,

where u ∈ L2(ΩR) [10].

This can be expressed alternatively, as it is in [54], as:

H1(ΩR) =
{
u ∈ L2(ΩR) ∣ ∥∇u∥2

L2 + ∥u∥2
L2 <∞

}
.

Therefore, the Sobolev space H1(ΩR) is the space of functions in L2(ΩR) whose

derivatives are also in L2(ΩR). These derivatives are defined in a weak sense, and this

space does include continuous piecewise linear functions [35]. Another perspective

is that in order for the test functions to be well-defined, we require that the partial

derivatives be defined globally in nature, and “tolerant of certain kinds of singular-

ities” [35]. Derivatives in the classical sense are local in nature, so we want a more

global definition where we can incorporate singularities.

We will also need to extend the idea of Sobolev spaces to the boundary. This

will be apparent when working with the coupling of the problem on the artificial
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boundary, ℬR. We define the trace of a function as the value of a function on its

boundary. For our problem this is a linear mapping from the Sobolev space on the

domain ΩR to the Sobolev space on the boundary ℬR [54]. Furthermore, the trace

theorem (see Theorem 4.2.2) states that the trace of functions in H1(ΩR) as mapped

to H1/2(ℬR) is well-defined and bounded [10]. We are particularly interested in the

spaces H1(ΩR), its trace H1/2(ℬR), and the dual space of H1/2(ℬR), H−1/2(ℬR). The

dual space is simply the set of bounded linear functionals on the space H1/2(ℬR).

All of this will help lay the framework for numerical applications. It is impor-

tant to note that the methods we will discuss, the FEM and the boundary element

method (BEM) “belong to the most used numerical discretization methods for the

approximate solution of elliptic boundary value problems” [97]. We will ultimately

see that a combination of these methods will be required, and is referred to in the

literature as a hybrid finite element / boundary integral (FE/BI) method.

1.4 Time versus Frequency Domain

Any scattering problem starts with Maxwell’s equations which describe the prop-

agation of electromagnetic waves, and the resulting problem can be analyzed in either

the time domain or frequency domain. Quite often, scattering problems are posed in

the frequency domain due to its convenience in a mathematical sense, and time har-

monic behavior is assumed. Field quantities that are harmonically oscillating with a

single frequency constitute time-harmonic behavior [55]. Frequency domain analysis

is “ideally suited for scattering analysis” from plane waves in arbitrary directions or

when the scattering source is localized [56]. One possible motivation for studying in

the frequency domain is that in optics, most applications deal with narrow bands of

radiation, making studying fixed-frequency problems relevant [9].

Nevertheless, with increases in computing power in the digital age, time domain

9



methods have increased in popularity [88]. It is especially important to the military

in many strategic areas involving short-pulse communication and radar systems [31].

It is also important to understand and predict behavior in the time domain because of

the potential to simulate transient phenomena, perform broadband characterization,

and model nonlinear devices [55]. The time domain “is ideally suited for antenna

analysis, where one is often interested in a solution over a broad frequency band for

one or a few excitations” [56]. It is also better suited for “visual representations of

understanding field interactions” [88]. Therefore, research in the time domain offers

many advantages, yet will be more mathematically challenging. Furthermore, a study

from a mathematical perspective will provide a new foundation in the literature, since

most mathematical approaches are from the frequency domain.
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II. Related and Previous Work / Literature Review

2.1 Solving the Electromagnetic Scattering Problem

Electromagnetic scattering from cavities with varying geometries has been studied

extensively in computational electromagnetics over the years. Anastassiu did a thor-

ough review all methods used for modeling electromagnetic scattering from cavities,

with a specific focus on engine inlets and open ducts from aircraft. He claimed this

was “One of the most challenging problems in modern applied electromagnetics” [5].

This could be due in part to the “appearance of spurious modes caused by interior

resonances” [105].

Anastassiu divided the approaches into exact or modal methods (such as Wiener-

Hopf and mode matching), high frequency and spectral methods, integral equation

methods (boundary integral approach, method of moments (MoM)), and differential-

equation methods (FEM, FE/BI, finite difference time domain (FDTD)). The major-

ity of these applications, however, are generally done on perfectly conducting surfaces,

which may be sufficient and appropriate for most applications [5]. Nevertheless, the

major numerical techniques in electromagnetics remain the MoM, FDTD, and FEM.

It is worth noting that hybrid methods, involving a combination of integral equation

and differential equation methods, have gained popularity, particulary if it is possible

to use a certain method where it is most computationally efficient [107]. From our

perspective, the FEM and BEM will be most important, as we will seek a hybrid

FE/BI approach. It is worth noting that the BEM was developed in the 1950s, and

has shown to be a powerful tool in the study of physical phenomena in an unbounded

domain, such as scattering [89].

From a mathematical perspective, differential equation methods and integral equa-

tion methods interest us the most. Purely mathematical treatments of scattering,
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however, appear to be more limited in scope than the numerical and computational

electromagnetic applications. It is clearly important to establish the mathematical

framework and well-posedness (existence and uniqueness) in a general setting before

one can implement these methods for specific settings and geometries. Colton, Kress,

and Cakoni have done extensive mathematical work in the area of scattering theory

over the years, and have used results to transition to a growing area of interest, in-

verse scattering, which is the reconstruction of the object given a scattered field (see

[10] and [19]). Monk provides a thorough treatment for the underlying mathematics

of the FEM, and discusses inverse problems as well [75]. It is important to note

that the study of inverse scattering problems in the context of IEDs would also be

a significant contribution, as particular shapes could be identified as IEDs. Nédélec

has also contributed significantly in the context of integral equations and integral

representation of solutions [77]. Angell and Kirsch studied optimization methods in

the context of antennas, but still showed the need of direct scattering solutions as a

foundation, using a problem with IBCs as an example [6]. Chandler-Wilde has also

done extensive research over the years, focusing on scattering with IBCs and rough

surfaces (see, for example, [12]).

However, all of these authors’ analysis is primarily in the frequency domain. All

have contributed extensively in this regard, with many common threads, such as de-

veloping cases involving IBCs at the surface. All use variational formulation methods

to establish well-posedness, which provides a natural foundation for computational

methods such as FEM. Yet the complications involving an overfilled cavity geometry

are not addressed by these authors. Therefore, before we consider the related work

in this specific area, we first consider the details of the IBC and its development over

the years.
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2.2 History of Impedance Boundary Conditions

The impedance concept was first mentioned in 1938 for time harmonic field theory

by Schelkunoff [109]. However, Shchukin is first credited with developing the IBC

by 1940. Leontovich also later derived surface impedance boundary conditions in

1948, so they all can be considered the first major contributors to the development

of the impedance boundary condition [81]. These impedance boundary conditions

were further developed by Senior in 1960, and they were almost exclusively used in

the frequency domain until the early 1990s [66]. It was then that these boundary

conditions in the time domain received more attention, particularly in the area of

numerical implementation. Therefore, the IBC in the time domain is still a relatively

recent and evolving area of research.

2.3 Impedance Boundary Conditions in the Time Domain

Because the impedance boundary condition is inherently a frequency-domain topic,

its conversion and implementation in the time domain is difficult and remains an on-

going area of research. There are two general approaches to this conversion: assuming

no frequency dependence of the material (i.e. constant parameter materials), or as-

suming the material is dispersive and frequency-dependent. Clearly, using a dispersive

impedance boundary condition enjoys the advantage of being applicable over a larger

frequency bandwidth, but it is more complex to implement [66].

Impedance boundary conditions have been used extensively in integral equation

formulations, the FDTD, and the frequency-domain FEM. In Jin and Riley’s book,

their formulations for incorporating the IBCs are initially done in the frequency do-

main, and then inverse Fourier transformed [56]. In fact, most of the computational

approaches in this area seek to accurately model frequency dependence.

Lee, Shin, and Kong modeled the impedance boundary condition in the time do-
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main, discretized using a centered-difference method, and used the resulting expres-

sions in the FDTD method. They approximate the impedance boundary condition

as a rational function of frequency, accounting for the dispersiveness of the condition,

and then transform into a time domain equation [69].

Ida and Yufrevev have done extensive research into the area of impedance bound-

ary conditions for transient scattering problems. Most of their research involves for-

mulating integral equations for use with methods with the FDTD or BEM methods.

They also investigate higher orders of approximation of impedance boundary con-

ditions, to include derivation of the boundary conditions in time domain. Most of

their work revolves around implementation of the IBCs into the time domain for some

numerical solver (See, for example, [52],[115],[114],[116],[113]).

Chen, Lu, and Michielssen studied a coupled set of time domain integral equations

with an impedance boundary condition. According to their work, the method never

develops internally resonant fields and is validated by numerical examples [84].

This concept not only is applicable in electromagnetics, but also is a popular area

in computational aeroacoustics (CAA), in which computation of sound propagation

through an engine inlet is important. Ozyoruk and Long develop a time domain IBC

using a Z-transform, and they model it as a rational function. They incorporate a

time discretized IBC into a Runge-Kutta scheme [80]. Bin, Hussaini, and Lee develop

a broadband time domain IBC [58]. Maloney and Smith ([72]) and Schutt-Aine and

Oh ([79]) also researched implementation of the IBC into the FDTD.

Therefore, the IBC has been studied quite extensively from a computational per-

spective in the time domain, but is lacking from a purely mathematical perspective.

Our goal, then, is to provide a foundation for this process, keeping in mind we are in-

terested more in the effects of a general Robin boundary condition (i.e.
∂u

∂n
+ku = f)

on the structure of the problem, rather than the explicit conversion of the IBC into
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the time domain.

As a result, we will start with the idea that there are two general approaches to

conversion. If we assume constant parameter materials, we end up with a straight-

forward conversion where we can substitute
∂

∂t
for {!, which resembles a first-order

absorbing boundary condition [55].

There is also another possible mathematical justification of this approach. If we

consider the expression for surface impedance as in [8] as:

� = (1 + {)

√
!�

2�
,

where � is the conductivity of the surface, we note a dependence of � on frequency

(!). However, if we were dealing with a situation where � was proportional to some

multiple of frequency, we could state that the frequency dependence is suppressed.

As a result, our assumption would closely resemble the IBC.

Finally, we mention that Wang in [108] studied transient scattering with a curved

absorbing boundary. The numerical examples depicting the scattered field in this

work will be important to us during the validation phase because FEM will be used

with the Newmark method. Thus, we can use this study as a baseline to ensure our

results compare favorably.

2.4 Research on Overfilled Cavities and Similar Geometries

The geometry of a cavity closely resembles structures involving defects, pertur-

bations, grooves, cracks, or rough or grated surfaces, while an overfilled cavity can

represent partially buried or embedded objects in a plane. For example, Hamid and

Hamid studied scattering by a partially buried dielectric sphere in the infinite PEC

plane. They arrive at an analytic solution based on the method of images, and present
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numerical results for a variety of conditions [40]. Also, Wang and Li studied a par-

tially embedded cylinder in a random dielectric rough surface. They used the MoM

technique and provided numerical results. Tsaur and Chang investigated a dielectric

cylinder buried in a shallow circular trough in the two-dimensional ground plane, and

derived a series solution as well as numerical results in the frequency domain, using

a mode-matching (or region-matching) method for both the TE and TM cases (see

[102] and [103]).

The study of impedance boundary conditions with objects or protrusions from

the surface can be traced back to the late 1960s. Goshin considered the problem of

an impedance cylinder resting on an impedance plane, citing the effects of surface

waves and expresses an exact solution [37]. Glisson studied an arbitrarily shaped

surface with impedance boundary conditions [34]. More recently, Swearingen studied

acoustic scattering from an impedance cylinder placed normal to an impedance plane,

modeling scattering from trees in a forest [101].

Chandler-Wilde has done a significant amount of mathematical research in the

area of impedance boundary value problems of the Helmholtz equation in the half-

plane (see [13], [11], and [67]), as well as with scattering from unbounded rough

surfaces [14]. His work has been restricted primarily to the frequency domain. Lines

and Chandler-Wilde, however, did study an inverse scattering problem in the context

of the time domain with a rough scattering surface [70].

Mathematical research involving overfilled cavities in the infinite ground plane has

primarily been limited to the frequency domain with both an impedance boundary

condition as well as a PEC ground plane. Durán, et al., established existence and

uniqueness of “outgoing solutions for the Helmholtz equation in a locally perturbed

half-plane” with impedance boundary conditions [29]. They developed a Green’s

function solution for the impedance half-plane. In addition, they establish an expres-
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sion for the radiation condition due to surface waves from the boundary. Their study

of the perturbation of the boundary resembles the geometry of an overfilled cavity,

as they studied it in the context of outdoor sound propagation or perturbed water

waves in a sea harbor.

They also separate the domain into two sub-domains connected through an artifi-

cial semicircular boundary, coupled through a Dirichlet-to-Neumann (DtN) operator

(See Figures 3 and 4), which maps the values of the scattered field on the artifical

boundary to its normal derivative. They establish results for both the two-dimensional

and three-dimensional cases in the frequency domain (see [29] and [30]). Their prob-

lem closely resembles our problem geometry, and we will use that approach as a

framework, particularly for the exterior problem.

Figure 3. Durán’s Exterior Problem Geometry [29]

Figure 4. Durán’s Interior Problem Geometry [29]
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Wood considered the scattering of a time-harmonic plane wave by an overfilled

cavity in the two-dimensional PEC ground plane [111]. She also uses an artificial

boundary condition on a semicircle enclosing the overfilled portion of the cavity; this

boundary couples the exterior fields to those inside the cavity. She solves for the fields

exactly via a separation of variables (SOV) technique, and then establishes existence

and uniqueness of the interior problem through a variational formulation using the

properties of the DtN operator on the artificial boundary. Huang and Wood extend

this work by implementing a finite element method to numerically simulate the results

of this problem geometry [51].

Also, D. U. Kui also studied overfilled cavities in his dissertation entitled, “ Nu-

merical Computation of Electromagnetic Scattering From Large Cavities” [65]. Kui

cites Wood’s previously discussed work and methods in this area, and studies the

case for multiple overfilled cavities, where the artificial boundary enclosing all of the

overfilled cavities takes the form of a semiellipse instead of a semicircle. Kui uses

the elliptic coordinate system to prove uniqueness and existence for the TM and TE

cases using SOV and the same techniques Wood uses in [111] for the semicircular

artificial boundary. Kui notes one advantage of this semielliptical artificial boundary

for multiple overfilled cavities is that it increases accuracy and efficiency due to the

smaller size of the computational domain [65].

Jin and Riley propose the use of the FE/BI method to analyze an antenna struc-

ture embedded in a ground plane that partly protrudes above the surface (refer to

Figure 5). They introduce a “truncation surface” and employ image theory to for-

mulate the exterior fields via integral equations. These boundary integral equations

take into account the effect of the ground plane on the radiated scattered fields. This

also eliminates internal resonance problems [56].

The overfilled cavity geometry has also been studied from a mathematical per-
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Figure 5. Jin and Riley Conformal Antenna [56]

spective in the time domain. Van and Wood studied the overfilled cavity in the PEC

ground plane in the time domain. They first discretized the problem in time, and

then used the coupling technique and DtN operator to help establish existence and

uniqueness of the variational forms. In addition, they perform finite element error

analysis and stability analysis for the time stepping scheme [105]. Huang and Wood

extended this work by implementing a hybrid finite element and Fourier transform

method to provide an analytical and numerical solution. Again, they solve for the

fields in the exterior region analytically, and use the FEM to solve for the interior

fields. The results are finally inverted back into the time domain [49].

Huang, Wood, and Havrilla use a hybrid finite element-Laplace transform method

to analyze the scattering problem of an overfilled cavity in the PEC ground plane in

the time domain. Their approach is generally similar to Van and Wood in [105];

however, they employ a domain decomposition technique integrated into the FE/BI

method. Here, an overlapping zone is created between the interior and exterior do-

mains where the Laplace transform is used as an analytic link condition. They also

provide numerical validation as well as an error analysis [50].

It is also important to note that the previous results assuming a PEC ground plane

can also be extended to a perfect magnetic conductor (PMC) ground plane. The PMC
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case is in essence the dual of the PEC case. That is, for the TM case, instead of a

homogeneous Dirichlet condition for the tangential component of the electric field

(Ez = 0), it would be a homogeneous Neumann condition (
∂Ez
∂n

= 0). Similarly, for

the TE case, instead of the Neumann condition for the tangential component of the

magnetic field, we would have a Dirichlet condition [94]. Even though pure PMC

materials are not known to exist, these results would be an important application

to the study of metamaterials which could closely model this boundary condition.

Applications in the study of metamaterials include smaller antennas and cloaking

research [71].
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III. Mathematical Formulation

3.1 Approach to Solution and Semidiscrete Problem

In order to solve a partial differential equation (PDE), the primary analytic ap-

proaches we can use are SOV, developing a Green’s function, and variational formu-

lation [39]. It has been shown that the separation of variables method is appropriate

for this problem geometry for a PEC or PMC surface. For an IBC, however, there

are more complications involved with this method. Hanson and Yakovlev address the

impedance plane problem through SOV by solving two one-dimensional problems,

and combining the results to get an expression for the Green’s function as well as for

the generated field [41]. As mentioned previously, Durán et al. and Chandler-Wilde

also obtained expressions for the Green’s function of an impedance half-plane. In

addition, Politis et al. develops several representations of the Green’s function for a

modified Helmholtz equation with IBCs on the surface [82]. Therefore, a generalized

Green’s function method will be the most appropriate method to solve the problem.

That is, we can derive a Green’s function for an infinite planar surface with an IBC,

and for the exterior problem, get an integral expression for the scattered field that

contains the Green’s function. Finally, we will use a variational formulation to solve

the interior problem. Thus, having explored all of these primary analytic methods

in order to show existence and uniqueness, we will use both the generalized Green’s

function method as well as variational formulation to obtain a solution.

Furthermore, these analytic methods will provide the foundation for both the finite

and boundary element methods, implemented as a hybrid FE/BI method. That is,

the variational formulation is a framework for the FEM, which has “almost universal

applicability” [97]. In addition, “the use of BEM requires the explicit knowledge of

a fundamental solution”, or Green’s function, “which allows the transformation of
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the PDE to a boundary integral equation to be solved” [97]. Furthermore, “BEM

are often used . . . to find solutions of boundary value problems in exterior unbounded

domains” [97]. Clearly, then, these techniques are the most appropriate to solve our

problem. According to Costabel in [23], we will also find that the use of boundary

integral equations has two important uses for us: “as a theoretical tool for proving

the existence of solutions and as a practical tool for the construction of solutions.”

The integral representation formula is a critical starting point for these applications.

To formulate and solve this problem, we will first decompose the entire solution

domain to two sub-domains via an artificial semicircle, ℬR, which entirely encloses

the overfilled cavity. These two sub-domains consist of the infinite upper half plane

over the impedance plane exterior to the semicircle, denoted UR, and the cavity plus

the interior region of the semicircle, denoted ΩR. Refer to Figure 6 for a depiction of

the two sub-domains.

Γext Γext

ℬR

ΩR

S S

UR

Figure 6. Sub-Domains of Problem

The two regions are coupled over the artificial semicircle through the use of this

DtN operator, thus exploiting the electromagnetic field continuity over the artificial

boundary. The variational formulation used for the interior problem will allow us to

establish well-posedness. In turn, the hybrid approach will come into play as we use
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the solution obtained from the FEM on the interior as the solution on the artificial

boundary. This will allow us to get an expression for the scattered field in the exterior

domain, as desired. This technique of using a semicircular artificial boundary with

a DtN mapping has been used by Givoli and Vigdergauz in [33], Lin and Grosh in

[112], and Zhao and Liu in [17]. However, they assumed more simplified boundary

conditions on the planar surface allowing a SOV approach involving explicit series

representation.

It is important to first address the possibilities for incorporating the time depen-

dence into the problem. We would expect additional difficulties due to this added

dimension, where concerns regarding stability of the method used become a factor

[22]. The literature mentions three general approaches to transient problems when

working towards formulating boundary integral methods: space-time integral equa-

tions, Laplace-transform methods, and general time-stepping methods [22].

For this problem, following Van and Wood in [105], we will choose to use the

Newmark scheme, an implicit time-stepping method that offers the advantage of

stability. This concept of applying the time discretization directly to the PDE was

first suggested by Rothe in 1930 [15]. This results in a sequence of boundary value

problems for inhomogeneous elliptic equations, where the inhomogeneities are simply

the solutions at the previous time steps [15]. One advantage is that once the procedure

is established for the solution at one time step, we can “march arbitrarily far in time

by simply repeating this procedure” [22]. It is worth noting that the Newmark scheme

is primarily used in time-domain studies of dynamic analysis of structures, though it

does have some use in electromagnetic scattering problems.

Therefore, we will discretize the TM equations in time by using the Newmark

time-marching scheme. When compared to a forward, backward, or central difference

scheme, some advantages of the Newmark method are that it can be made uncondi-
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tionally stable and it has the “best truncation error” for a choice of parameters [88].

This method is a two-step finite difference method in which there is a prediction of

the answer followed by a correction of the predicted value. At each time step, we

construct a nonlocal boundary condition on the semicircle ℬR to couple the solution

in the infinite domain exterior to ℬR and the solution in the bounded domain inside

ℬR.

The Newmark scheme is defined by the following: Let N be a positive integer, T

be the time interval, �t = T/N be the temporal step size, and tn+1 = (n + 1)�t for

n = 0, 1, 2, ..., N − 1. Denote the following as approximations at t = tn+1:

un+1 ≈ u,

u̇n+1 ≈ ∂u

∂t
,

ün+1 ≈ ∂2u

∂t2
.

These approximations are related by

un+1 = un + �tu̇n +
(�t)2

2

[
2�ün+1 + (1− 2�)ün

]
, 0 ≤ n ≤ N − 1, (3.1.1)

u̇n+1 = u̇n + �t
[

ün+1 + (1− 
)ün

]
, 0 ≤ n ≤ N − 1, (3.1.2)

where 
 and � are parameters to be determined to guarantee stability of the time-

marching scheme [105].

We will denote ui as the incident field Ei
z, u the total field Ez, and us the scattered

field Es
z . The semidiscrete problem is to find un+1, n = 0, 1, ..., N, such that we have

the following:
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Prediction

ũn+1 = un + �tu̇n +
(�t)2

2
(1− 2�)ün, (3.1.3)

˜̇un+1 = u̇n + �t(1− 
)ün, (3.1.4)

Solution

⎧⎨⎩
−Δun+1 + �2"ru

n+1 = �2"rũ
n+1 in ΩR,

u̇n+1 = −�
�

∂un+1

∂n
on S,

un+1 = us,n+1 + ui,n+1 on ℬR,

(3.1.5)

Correction

ün+1 = �2(un+1 − ũn+1), (3.1.6)

u̇n+1 = ˜̇un+1 + �t
ün+1, (3.1.7)

where �2 =
1

(�t)2�
.

The IBC on Γext and S (See Appendix A for the derivation of these conditions)

becomes:

u̇n+1 = −�
�

∂un+1

∂n
. (3.1.8)

Using the correction factor described above for ün+1 and u̇n+1, we can express the

IBC in (3.1.8) for the total field as:

�t
�2un+1 +
�

�

∂un+1

∂n
= �t
�2ũn+1 − ˜̇un+1. (3.1.9)

Therefore, the scattered field us,n+1 satisfies the following exterior problem:
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⎧⎨⎩
−Δus,n+1 + �2us,n+1 = �2ũs,n+1 in UR,

us,n+1(R, �) = g(R, �) on ℬR,

�t
�2us,n+1 +
�

�

∂us,n+1

∂n
= �t
�2ũs,n+1 − ˜̇us,n+1 +K on Γext,

(3.1.10)

where g
def
= un+1 − ui,n+1 and

K = −�t
�2ui,n+1 − �

�

∂ui,n+1

∂n
+ �t
�2ũi,n+1 − ˜̇ui,n+1,

and the radiation condition is satisfied:

lim
r→∞

√
r

(
∂us,n+1

∂r
+

1

c
u̇s,n+1

)
= 0. (3.1.11)

We note that in considering the value of K above, since the incident wave is

known, the prediction will equal the actual value. Therefore, K = 0.

3.2 Integral Representation of Solution

In what follows, we suppress the n + 1 superscript from (3.1.10). We seek the

solution for the nonhomogeneous modified Helmholtz equation:

−Δu(r) + �2u(r) = f(r) in UR, (3.2.1)

where r denotes position, f(r) = �2ũs,n+1, subject to nonhomogeneous boundary

conditions of the form:

Au(rs) +B
∂u(rs)

∂n
= ℎ(rs) on Γext . (3.2.2)
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Here, rs is on the surface, and A and B are constants defined as A = �t
�2 and

B =
�

�
, and ℎ(rs) = �t
�2ũs,n+1 − ˜̇us,n+1.

We require that the associated Green’s function satisfy (where r′ denotes source

location):

−ΔG(r∣r′) + �2G(r∣r′) = �(r − r′) in U , (3.2.3)

AG(r∣r′) +B
∂G(r∣r′)

∂n
= 0 on Γext . (3.2.4)

Using a generalized Green’s function method, we multiply (3.2.1) by G(r∣r′) and

(3.2.3) by u(r) to get

−Δu(r)G(r∣r′) + �2u(r)G(r∣r′) = f(r)G(r∣r′) (3.2.5)

−ΔG(r∣r′)u(r) + �2G(r∣r′)u(r) = �(r − r′)u(r). (3.2.6)

Next we subtract (3.2.5) from (3.2.6) and integrate over the enclosed surface UR
(see Figure 7) to get:

∫∫
UR

(
−ΔG(r∣r′)u(r) + Δu(r)G(r∣r′)

)
⋅ ndS =

∫∫
UR
�(r − r′)u(r)dS

−
∫∫
UR
f(r)G(r∣r′)dS

= u(r′)−
∫∫
UR
f(r)G(r∣r′)dS.

(3.2.7)

We apply Green’s second identity in two dimensions to the left-hand side of (3.2.7)
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ℬR
R

Γ∞UR

Figure 7. Exterior Domain

to get:

∫
C

(
G(r∣r′)∇u(r)− u(r)∇G(r∣r′)

)
⋅ ndℓ = u(r′)−

∫∫
UR
f(r)G(r∣r′)dS, or

u(r′) =

∫∫
UR
f(r)G(r∣r′)dS +

∫
C

(
G(r∣r′)∇u(r)− u(r)∇G(r∣r′)

)
⋅ ndℓ, (3.2.8)

where C is defined as the contour enclosing the surface, UR, in Figure 7, and C =

Γext +ℬR + Γ∞. This is a common development and expected result in the literature

(See, for example, [8] or [55]).

Thus, our solution depends on the sources inside the enclosed region as well as the

values of u and∇u on the contour [27]. The Green’s function, which will be developed

separately, depends on the boundary conditions and radiation condition. Therefore,

we seek to simplify the expression on the boundary, attempting to incorporate the

impedance boundary condition.

Following [26], we will add and subtract the terms
B

A

∂u(r)

∂n

∂G(r∣r′)

∂n
from the
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boundary integral expression in (3.2.8) on Γext to get:

∫
Γext

[
G(r∣r′)

∂u(r)

∂n
− u(r)

∂G(r∣r′)

∂n
+
B

A

∂u(r)

∂n

∂G(r∣r′)

∂n
− B

A

∂u(r)

∂n

∂G(r∣r′)

∂n

]
dℓ

=

∫
Γext

1

A

[
(AG(r∣r′)

∂u(r)

∂n
− Au(r)

∂G(r∣r′)

∂n
+B

∂u(r)

∂n

∂G(r∣r′)

∂n

−B∂u(r)

∂n

∂G(r∣r′)

∂n

]
dℓ

=

∫
Γext

1

A

[
AG(r∣r′∂u(r)

∂n
+B

∂u(r)

∂n

∂G(r∣r′)

∂n
− Au(r)

∂G(r∣r′)

∂n

−B∂u(r)

∂n

∂G(r∣r′)

∂n

]
dℓ

=

∫
Γext

1

A

[(
AG(r∣r′) +B

∂G(r∣r′)

∂n

)
∂u(r)

∂n
−
(
Au(r) +B

∂u(r)

∂n

)
∂G(r∣r′)

∂n

]
dℓ.

Now we use the values of (3.2.2) and (3.2.4) to get:

=

∫
Γext

1

A

[(
0
)∂u(r)

∂n
−
(
ℎ(r)

)∂G(r∣r′)

∂n

]
dℓ

=

∫
Γext

1

A

(
− ℎ(r)

)[∂G(r∣r′)

∂n

]
dℓ.

We recognize that at Γ∞, the radiation condition will cause the corresponding contour

integral to vanish, so (3.2.8) further reduces to:

u(r′) =

∫∫
UR
f(r)G(r∣r′)dS +

∫
ℬR

(
G(r∣r′)∇u(r)− u(r)∇G(r∣r′)

)
⋅ ndℓ

− 1

A

∫
Γext

ℎ(r)
[∂G(r∣r′)

∂n′
]
dℓ. (3.2.9)

Since r and r′ are arbitrary, and because the Green’s function is symmetric (see
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(3.3.7)), we interchange r and r′ to get:

u(r) =

∫∫
UR
f(r′)G(r∣r′)dS ′ +

∫
ℬR

(
G(r∣r′))

∂u(r)

∂n′
− u(r′)

∂G(r∣r′)

∂n′
)
dℓ′

− 1

A

∫
Γext

ℎ(r′)
[∂G(r∣r′)

∂n′
]
dℓ′, (3.2.10)

where the normal derivative is taken with respect to the primed (or source) coordi-

nates.

3.3 Green’s Function Development

The integral representation of the solution found previously depends on finding

the associated Green’s function. The geometry depicted in Figure 7 for the exterior

solution is an annular sector, which accounts for the overfilled portion of the cavity.

However, as in Durán et al., we first will develop the explicit Green’s function for an

impedance half-plane and apply it to the modified problem geometry. We will note

that the Green’s function for an impedance plane has been studied in great detail by

several authors such as Politis in [82], Ochmann and Brick in [78], and most recently

Hein in [42]. In fact, Hein’s dissertation significantly expands the work of Durán et

al. in [28], so this is an ongoing area of research. Nevertheless, we will still follow and

expand the development of the Green’s function in Durán et al. and apply it to the

modified Helmholtz equation (See [29] and [28]).

We fix a source point r′ = (x′, y′) ∈ U = ℝ2
+ ∖Ω. Thus, the Green’s function must

solve the boundary value problem:

⎧⎨⎩
−ΔG(r∣r′) + �2G(r∣r′) = �(r − r′) in U ,

AG(r∣r′) +B
∂G(r∣r′)

∂y
= 0 on {y = 0}.

(3.3.1)

Following Durán in [28], since no horizontal variation exists in the strict half-plane
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problem, we can assume without loss of generality that x′ = 0. In order to reduce the

PDE in (3.3.1) to an ODE, we take a Fourier transform in the horizontal direction x,

and denote the Fourier variable �:

F [G] = Ĝ(�, y) =

∫ ∞
−∞

G(r∣r′)e−i�xdx,

∂Ĝ(�, y)

∂x
= (−i�)

∫ ∞
−∞

G(r∣r′)e−i�xdx = (−i�)F [G],

∂2Ĝ(�, y)

∂x2
= (−i�)(−i�)F [G] = −�2F [G],

F [�(r − r′)] = F [�(x− x′)�(y − y′)] =
1√
2�
�(y − y′),

−
[
∂2Ĝ(�, y)

∂x2
+
∂2Ĝ(�, y)

∂y2

]
+ �2Ĝ(�, y) =

1√
2�
�(y − y′).

Thus, we obtain the equation in the vertical variable y:

⎧⎨⎩
−∂

2Ĝ(�, y)

∂y2
+
(
�2 + �2

)
Ĝ(�, y) =

1√
2�
�(y − y′) for y > 0

AĜ(�, y) +B
∂Ĝ(�, y)

∂y
= 0 for y = 0, or Γext

(3.3.2)

We will solve this via scattering superposition (See [41]), where we seek a solution

of the form

Ĝ = Gp +Gℎ,

where Gp represents the principal Green’s function that satisfies the jump and conti-

nuity conditions, and Gℎ when added to Gp will satisfy the radiation and boundary

condition for our particular problem.
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First, we solve for Gp, away from y = y′:

−∂
2Gp(�, y)

∂y2
+
(
�2 + �2

)
Gp(�, y) = 0 =⇒

∂2Gp(�, y)

∂y2
−
(
�2 + �2

)
Gp(�, y) = 0.

The general solutions will be of the form:

Gp(�, y) =

⎧⎨⎩
C1e
√
�2+�2y + C2e

−
√
�2+�2y for y < y′

C3e
√
�2+�2y + C4e

−
√
�2+�2y for y > y′.

We require that Gp(�, y) ∈ L2(−∞,∞), further reducing to:

Gp(�, y) =

⎧⎨⎩
C1e
√
�2+�2y for y < y′

C4e
−
√
�2+�2y for y > y′.

Enforcing the continuity conditions at y = y′ yields:

C1e
√
�2+�2y′ = C4e

−
√
�2+�2y′ =⇒ C1 = C4e

−2
√
�2+�2y′ .

Finally, applying the jump conditions :

lim
"→0

∂Gp(�, y)

∂y

∣∣∣∣y=y′+"

y=y′−"
= −1 =⇒

−C4

√
�2 + �2e−

√
�2+�2(y′+") − C1

√
�2 + �2e

√
�2+�2(y′−") = −1 =⇒

−C4e
−
√
�2+�2y′ − C1e

√
�2+�2y′ = − 1√

�2 + �2
.
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Substituting for C1 yields:

−C4e
−
√
�2+�2y′ − (C4e

−2
√
�2+�2y′)e

√
�2+�2y′ = − 1√

�2 + �2

−2C4e
−
√
�2+�2y′ = − 1√

�2 + �2
=⇒

C4 =
e
√
�2+�2y′

2
√
�2 + �2

,

C1 =
e−
√
�2+�2y′

2
√
�2 + �2

.

Therefore, we can express the principal Green’s function for the impedance half-plane

as

Gp(�, y) =

⎧⎨⎩
e−
√
�2+�2y′

2
√
�2 + �2

e
√
�2+�2y...y < y′

e
√
�2+�2y′

2
√
�2 + �2

e−
√
�2+�2y...y > y′

=

⎧⎨⎩
e
√
�2+�2(y−y′)

2
√
�2 + �2

...y < y′

e−
√
�2+�2(y−y′)

2
√
�2 + �2

...y > y′

which simplifies to

Gp(�, y) =
e−
√
�2+�2∣y′−y∣

2
√
�2 + �2

. (3.3.3)

Now, to determine Gℎ, we first determine the homogeneous solution of:

∂2Gℎ(�, y)

∂y2
−
(
�2 + �2

)
Gℎ(�, y) = 0,

which is

Gℎ(�, y) = C5e
√
�2+�2y + C6e

−
√
�2+�2y,

and C5 = 0 due to the radiation condition. Therefore, we have our Green’s function
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representation as:

Ĝ(�, y) = Gp(�, y) +Gℎ(�, y) =
e−
√
�2+�2∣y′−y∣

2
√
�2 + �2

+ C6e
−
√
�2+�2y.

Applying the IBC to Ĝ above yields:

AĜ(�, y) +B
∂Ĝ(�, y)

∂y

∣∣∣∣∣
y=0

= 0 =⇒

A

(
e−
√
�2+�2∣y′−y∣

2
√
�2 + �2

+ C6e
−
√
�2+�2y

)
+

B

(√
�2 + �2e−

√
�2+�2∣y′−y∣

2
√
�2 + �2

− C6

√
�2 + �2e−

√
�2+�2y

)∣∣∣∣∣
y=0

= 0.

At y = 0 we have:

A

(
e−
√
�2+�2∣y′∣

2
√
�2 + �2

+ C6

)
+B

(√
�2 + �2e−

√
�2+�2∣y′∣

2
√
�2 + �2

− C6

√
�2 + �2

)
= 0

A
e−
√
�2+�2∣y′∣

2
√
�2 + �2

+ AC6 +B

√
�2 + �2e−

√
�2+�2∣y′∣

2
√
�2 + �2

−BC6

√
�2 + �2 = 0

C6

(
A−B

√
�2 + �2

)
= −(A+B

√
�2 + �2)e−

√
�2+�2y′

2
√
�2 + �2

C6 = −(A+B
√
�2 + �2)

(A−B
√
�2 + �2)

e−
√
�2+�2y′

2
√
�2 + �2

.

Now we are able to write our final Green’s function representation as :

Ĝ(�, y) = Gp(�, y) +Gℎ(�, y)

=
e−
√
�2+�2∣y′−y∣

2
√
�2 + �2

− (A+B
√
�2 + �2)

(A−B
√
�2 + �2)

e−
√
�2+�2y′

2
√
�2 + �2

e−
√
�2+�2y.
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Factoring out 1
2

and multiplying by a scale of 1√
2�

yields:

Ĝ(�, y) =
1√
8�

(
e−
√
�2+�2∣y′−y∣√
�2 + �2

− (A+B
√
�2 + �2)

(A−B
√
�2 + �2)

e−
√
�2+�2y′√
�2 + �2

e−
√
�2+�2y

)
(3.3.4)

Now we take the inverse Fourier transform of the previous expression to get the

desired spatial expression:

G(r∣r′) =
1

4�

∫ ∞
−∞

e−
√
�2+�2∣y′−y∣√
�2 + �2

ei(x
′−x)�d�

− 1

4�

∫ ∞
−∞

(
(A+B

√
�2 + �2)

(A−B
√
�2 + �2)

)
e−
√
�2+�2(y′+y)√
�2 + �2

ei(x
′−x)�d�. (3.3.5)

Recognizing that the second term in the spatial expression above may be rewritten

as

− 1

4�

∫ ∞
−∞

(
1 +

2B
√
�2 + �2

A−B
√
�2 + �2

)
e−
√
�2+�2(y′+y)√
�2 + �2

ei(x
′−x)�d�,

and using the fact that (see [29])

1

4�

∫ ∞
−∞

e−
√
�2+�2∣y′−y∣√
�2 + �2

ei(x
′−x)�d� =

i

4
H

(1)
0 (i�R),

where R =
√

(x′ − x)2 + (y′ − y)2, as well as the fact that

K0(kR) =
�i

2
H

(1)
0 (ikR),

we have

1

4�

∫ ∞
−∞

e−
√
�2+�2∣y′−y∣√
�2 + �2

ei(x
′−x)�d� =

1

2�
K0(�R).

Similarly, from [28], we have,

1

4�

∫ ∞
−∞

e−
√
�2+�2(y′+y)√
�2 + �2

ei(x
′−x)�d� =

1

2�
K0(�R∗),
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where R∗ =
√

(x′ − x)2 + (y′ + y)2. This results in the Green’s function becoming

G(r∣r′) =
1

2�
K0(�R)− 1

2�
K0(�R∗)− 2B

4�

∫ ∞
−∞

e−
√
�2+�2(y′+y)

(A−B
√
�2 + �2)

ei(x
′−x)�d�. (3.3.6)

It is important to observe at this point, that this expression makes sense physically,

in that if the surface was a PEC, then B = 0, causing the third term in (3.3.6)

to vanish. This is consistent with an assumed Dirichlet boundary condition on the

surface, and is confirmed in [104]. Furthermore, we note that the first two terms in

(3.3.6) correspond to the “classical” wave behavior, whereas the third term in (3.3.6)

incorporates the surface wave behavior expected with an impedance-type surface.

The only question remaining is if it is possible to reduce the integral expression in

(3.3.6), which represents the surface wave behavior, into a simpler expression using

residue analysis. In order to facilitate evaluating this integral using residue theory,

the third term in (3.3.6) will be rewritten as

−2B

4�

∫ ∞
−∞

e−
√
�2+�2(y′+y)

(A−B
√
�2 + �2)

ei(x
′−x)�d� =

− 2B

4�

∫ ∞
−∞

(
−

A
B

+
√
�2+�2

B

)
e−
√
�2+�2(y′+y)ei(x

′−x)�(
� +

√
(A
B

)2 − �2
)(
� −

√
(A
B

)2 − �2
)d�.

If � is treated as a complex variable, then the integrand has branch points at � = ±i�

and poles at � = ±
√(A

B

)2

− �2, and it can be shown the contribution due to the

poles is represented by

i

[
− A

B

e−
A
B

(y′+y)ei∣x−x
′∣
√

(A
B

)2−�2√
(A
B

)2 − �2

]
.

Hein makes the observation that this expression “describes the asymptotic behav-

ior of the surface waves, which are linked to the presence of the poles” [42]. He adds
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that in order to express the proper physical results (that is, an outgoing progressive

surface wave, and not a standing surface wave), the above expression becomes:

i

[
− A

B

e−
A
B

(y′+y)√
(A
B

)2 − �2

cos

(
∣x− x′∣

√(
A

B

)2

− �2

)]
.

As for the fourth term of the Green’s function regarding the contributions of the

branch cuts, we note that Politis et al. in [82], Durán et al. in [28], and Hein in [42]

all reconcile this term in different ways, and it is worth citing each result. For example,

Politis derives an explicit integral expression for the branch cuts and further provides

a series expansion of this term in polar coordinates [82]. He states this expression

is “more convenient for numerical purposes”; for our case it would be expressed as

follows:

− 1

�

∫ ∞
�

e�∣x−x
′∣

(A
B

)2 − �2 + �2
×(√

�2 − �2 cos
(√

�2 − �2(y′ + y)
)

+
A

B
sin
(√

�2 − �2(y′ + y)
))
d�.

Durán in [28], however, reconciles this remaining term in the Green’s function by

using an inverse fast Fourier transform (IFFT) during the numerical implementation

to get the spatial result. Applying this to our result yields the expression:

B

2�

∫ ∞
−∞

e−
√
�2+�2(y′+y)

(A−B
√
�2 + �2)

ei(x
′−x)�d�.

Hein states that this term can be reduced to be better suited for numerical inte-

gration [42]. Applying his technique to our case yields:

�

2�
e−

A
B

(y′+y)

∫ y′+y

−∞
K1(�

√
(x′ − x)2 + �2)

�e
A
B
�√

(x′ − x)2 + �2
d�.

37



Therefore, Hein’s recent development with this portion of the Green’s function is

most suitable to apply for both analytical and numerical methods, so we will consider

our final Green’s function expression in the spatial domain for the problem to be the

following:

G(r∣r′) =
1

2�
K0(�R)− 1

2�
K0(�R∗)

− i
[
− A

B

e−
A
B

(y′+y)√
(A
B

)2 − �2

cos
(
∣x− x′∣

√(
A

B

)2

− �2
)]

+
�

2�
e−

A
B

(y′+y)

∫ y′+y

−∞
K1(�

√
(x′ − x)2 + �2)

�e
A
B
�√

(x′ − x)2 + �2
d�. (3.3.7)

3.4 Steklov-Poincaré Operator Analysis

Recall the integral representation of the solution in the exterior domain (the an-

nular sector depicted in Figure 7) is

u(r) =

∫∫
UR
f(r′)G(r∣r′)dS ′ − 1

A

∫
Γext

ℎ(r′)
∂G(r∣r′)

∂y′
dx′

+

∫
ℬR

(
G(r∣r′)

∂u(r′)

∂nr′
− u(r′)

∂G(r∣r′)

∂nr′

)
d�′ ; r ∈ UR. (3.4.1)

At this point, we wish to implement an integral equation method along the ar-

tificial boundary, ℬR, to couple the solution along the artificial boundary. We will

henceforth name the DtN operator as the Steklov-Poincarè operator. This is because

we will be using integral operator theory to obtain an expression for this operator.

It is expressed in terms of integral equations and not series expressions, and the

literature is consistent in this regard.

First, let us define formally the map TR : H1/2(ℬR) → H−1/2(ℬR), where u ∈

H1/2(ℬR) is a radiating solution to the modified Helmholtz equation mapped to its

normal derivative
∂u

∂n
∈ H−1/2(ℬR). Throughout the literature, the idea of mapping a
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solution to its normal derivative has several other names, such as the capacity operator

[77] or the Calderon operator [75]. With a Robin boundary condition enforced at the

ground plane for this particular problem geometry, it does not appear that an exact

series representation is possible as it was with the PEC or PMC case. Therefore, using

the integral representation of the solution, we can express the mapping of the integral

representation of the exact solution in the exterior domain to its normal derivative

as restricted to ℬR as the Steklov-Poincaré operator [54].

Givoli further describes this type of mapping as an exact nonlocal absorbing

boundary condition. The term “nonlocal” refers to the fact that we are using a

boundary integral operator over the entire artificial semicircle ℬR [32]. The boundary

conditions are nonreflecting as well in that we would expect no spurious reflections

[54]. In fact, this type of artificial boundary condition was the result of many years

of trying to reduce or eliminate spurious reflections [32]. This technique of truncating

the domain and using a boundary integral on the artificial boundary is referred to

as a hybrid FE/BI method, and is considered a “mainstream method” for analysis

in the computational electromagnetic community [107]. In addition, Givoli makes an

interesting observation worth mentioning in the context of our research. He states

that in the area of acoustics, “the DtN condition can be perceived as a nonlocal

impedance boundary condition, relating the normal velocity (
∂u

∂r
) and the pressure

(u) on the boundary” [32]. He further states that this mapping can be difficult to

express in “closed analytic form,” especially in cases of “special geometries” and the

“time-dependent case” [32].
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From (3.4.1), we shift r onto the artificial boundary ℬR, to obtain

1

2
u(r) =

Newton potential︷ ︸︸ ︷∫∫
UR
f(r′)G(r∣r′)dS ′− 1

A

∫
Γext

ℎ(r′)
∂G(r∣r′)

∂y′
dx′

+

∫
ℬR

(
G(r∣r′)

∂u(r′)

∂nr′︸ ︷︷ ︸
Single-layer potential

− u(r′)
∂G(r∣r′)

∂nr′︸ ︷︷ ︸
Double-layer potential

)
d�′ ; r ∈ ℬR. (3.4.2)

At this point, it is worth discussing how to treat the inhomogeneities incorporated

with the Newton potential and the term accounting for the effects of the impedance

plane. There are several possibilities on how to treat these terms, which result from

the time discretization of the PDE. In our case, it is divided into two portions, the

domain integral UR as well as the boundary integral Γext. While using this technique

will require further discretization of the domain and a portion of the boundary, it is

only done “for purposes of numerical integration” [22]. This computation will ulti-

mately be considered as the known forcing terms or right-hand side of the variational

formulation. As we will develop, the other terms in (3.4.2) will help constitute the

Steklov-Poincarè operator expression.

Taking a normal derivative
∂

∂n
of (3.4.2) along ℬR yields the hypersingular bound-

ary integral equation:

1

2

∂u(r)

∂nr
=

Normal Derivative of Newton potential︷ ︸︸ ︷
∂

∂n

(∫∫
UR
f(r′)G(r∣r′)dS ′ − 1

A

∫
Γext

ℎ(r′)
∂G(r∣r′)

∂y′
dx′
)

+∫
ℬR

(
∂G(r∣r′)

∂nr

∂u(r′)

∂nr′︸ ︷︷ ︸
Adjoint Double-layer potential

−u(r′)
∂

∂nr

∂G(r∣r′)

∂nr′︸ ︷︷ ︸
Hypersingular operator

)
d�′ ; r ∈ ℬR. (3.4.3)

We define '(r′) =
∂u(r′)

∂nr′
as in Hsiao et al. in [48], so all of the boundary integral
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operators for r ∈ ℬR are expressed as follows:

(S')(r) =

∫
ℬR
G(r∣r′)'(r′)d�′, (Single-layer potential operator) (3.4.4)

(Du)(r) =

∫
ℬR
u(r′)

∂G(r∣r′)

∂nr′
d�′, (Double-layer potential operator) (3.4.5)

(A')(r) =

∫
ℬR

∂G(r∣r′)

∂nr
'(r′)d�′, (Adjoint Double-layer potential operator)

(3.4.6)

(Hu)(r) = −
∫
ℬR
u(r′)

∂

∂nr

∂G(r∣r′)

∂nr′
d�′. (Hypersingular operator) (3.4.7)

The mapping properties are respectively defined as follows:

S : H−1/2(ℬR)→ H1/2(ℬR),

D : H1/2(ℬR)→ H1/2(ℬR),

A : H−1/2(ℬR)→ H−1/2(ℬR),

H : H1/2(ℬR)→ H−1/2(ℬR).

Because we are dealing with an operator of the form −Δ + �2 (the modified

Helmholtz operator in Equation (3.2.1)), Costabel states that this identical form is

the “mathematically simplest case” of a formally positive second order elliptic partial

differential operator [23]. Also, if a fundamental solution exists for use in the integral

representation expression, as we earlier demonstrated with the development of the

Green’s function for the impedance half-plane, then the mapping properties are well-

established for the preceding boundary integral operators. In particular, the operators

are bounded [21].
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If we further define the Newton potential and the impedance plane term to be

(Nf)(r) =

∫∫
UR
f(r′)G(r∣r′)dS ′ ; r ∈ ℬR, (3.4.8)

(Pℎ)(r) = − 1

A

∫
Γext

ℎ(r′)
∂G(r∣r′)

∂y′
dx′ ; r ∈ ℬR, (3.4.9)

and note that their mapping properties are

N : L2(UR)→ H1/2(ℬR),

P : L2(UR)→ H1/2(ℬR),

then N and P are bounded operators as well (See Steinbach in [97]).

Therefore, denoting I as the identity operator, we can rewrite (3.4.2) in operator

notation as

1

2
(Iu)(r) = (S')(r)− (Du)(r) + (Nf)(r) + (Pℎ)(r) ; r ∈ ℬR =⇒

(S')(r) = (
1

2
I +D)u(r)− [(Nf)(r) + (Pℎ)(r)] ; r ∈ ℬR.

Assuming the Single-layer potential operator, S, is linear and invertible (because it

is H−1/2(ℬR)-elliptic ; see Proposition 3.4.1) yields

S−1(S')(r) = S−1(
1

2
I +D)u(r)− S−1[(Nf)(r) + (Pℎ)(r)] ; r ∈ ℬR =⇒

'(r) = S−1(
1

2
I +D)u(r)− S−1[(Nf)(r) + (Pℎ)(r)] ; r ∈ ℬR. (3.4.10)

Here, as in [48], we define TR as a Steklov-Poincarè operator as follows:

(TRu)(r) = S−1(
1

2
I +D)u(r),
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where we have TR : H1/2(ℬR)→ H−1/2(ℬR).

We further define the normal derivatives of the Newton potential and the impedance

plane terms to be

(N ′f)(r) =
∂

∂r

(∫∫
UR
f(r′)G(r∣r′)dS ′

)
; r ∈ ℬR, (3.4.11)

(P ′ℎ)(r) =
∂

∂r

(
− 1

A

∫
Γext

ℎ(r′)
∂G(r∣r′)

∂y′
dx′
)

; r ∈ ℬR, (3.4.12)

and observe that their mapping properties are

N ′ : L2(UR)→ H−1/2(ℬR),

P ′ : L2(UR)→ H−1/2(ℬR).

Then the hypersingular boundary integral equation in (3.4.3) can be cast as

1

2
(I')(r) = (A')(r) + (Hu)(r) + (N ′f)(r) + (P ′ℎ)(r)

(
1

2
I − A)'(r) = (Hu)(r) + (N ′f)(r) + (P ′ℎ)(r)

(
1

2
I − A)'(r)− (I')(r) = (Hu)(r)− (I') + (N ′f)(r) + (P ′ℎ)(r)

(−1

2
I')(r)− (A')(r) = (Hu)(r)− (I') + (N ′f)(r) + (P ′ℎ)(r)

'(r) = (
1

2
I + A)'(r) + (Hu)(r) + (N ′f)(r) + (P ′ℎ)(r).
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Substituting the expression for '(r) in (3.4.10) into the above equation yields

'(r) = (
1

2
I + A)

[
S−1(

1

2
I +D)u(r)− S−1[(Nf)(r) + (Pℎ)(r)]

]
+ (Hu)(r)

+ [(N ′f)(r) + (P ′ℎ)(r)]

'(r) =

[
(
1

2
I + A)S−1(

1

2
I +D) +H

]
︸ ︷︷ ︸

Symmetric form of Steklov-Poincarè operator

u(r)

− (
1

2
I + A)S−1[(Nf)(r) + (Pℎ)(r)] + [(N ′f)(r) + (P ′ℎ)(r)] ; r ∈ ℬR. (3.4.13)

The above expression (3.4.13) gives an alternative symmetric form of the Steklov-

Poincarè operator as identified above [68]. Therefore, we have two expressions map-

ping u(r) to '(r) for r ∈ ℬR:

'(r) = S−1(
1

2
I +D)u(r)− S−1[(Nf)(r) + (Pℎ)(r)] ; r ∈ ℬR, and

'(r) =

[
(
1

2
I + A)S−1(

1

2
I +D) +H

]
u(r)− (

1

2
I + A)S−1[(Nf)(r) + (Pℎ)(r)]

+ [(N ′f)(r) + (P ′ℎ)(r)] ; r ∈ ℬR.

from which we can deduce that the Steklov-Poincarè operator, TR, may be expressed

as

TR = S−1(
1

2
I +D) = (

1

2
I + A)S−1(

1

2
I +D) +H. (3.4.14)

This is a result that is also established in the literature (see, for example, Steinbach

and Wendland in [98]).

It is important to note here that we are interested in yet another symmetric

representation of the Steklov-Poincarè operator, TR, as

TR = S−1(
1

2
I +D) = S−1(

1

2
I +D)SS−1 = S−1ZS−1, (3.4.15)
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where Z = (
1

2
I+D)S. According to Hsiao , this alternative symmetric representation

is important “when coupling boundary elements with a symmetric finite element

scheme, one can introduce a modified hybrid discretization scheme” [48]. It also

avoids the use of the hypersingular operator. This certainly applies to our problem,

and we will discuss this further when we develop the finite element approximation.

Before we prove the main theorems in this section, we present several well-known

propositions for boundary integral operators. The following propositions are estab-

lished in several sources, but here we cite Steinbach and Wendland in [98] for their

development:

Proposition 3.4.1 The single-layer potential operator, S, is H−1/2(ℬR)-elliptic, i.e.,

⟨Sw,w⟩L2(ℬR) ≥ cS1 ∥w∥2
H−1/2(ℬR) ,∀w ∈ H−1/2(ℬR). (3.4.16)

In addition, according to [98], since the single-layer potential operator, S, is

bounded, we can use the equivalent norm of the Sobolev space H−1/2(ℬR) induced

by S :

∥w∥S =
√
⟨Sw,w⟩L2(ℬR) ∀w ∈ H−1/2(ℬR),

as well as the equivalent norm of the Sobolev space H1/2(ℬR) induced by S−1 :

∥v∥S−1 =
√
⟨S−1v, v⟩L2(ℬR) ∀v ∈ H1/2(ℬR).

Proposition 3.4.2 The hypersingular operator, H, is H1/2(ℬR)-elliptic, i.e.,

⟨Hw,w⟩L2(ℬR) ≥ cH1 ∥w∥2
H1/2(ℬR) ,∀w ∈ H1/2(ℬR). (3.4.17)

Proposition 3.4.3 The double-layer potential operator D can be symmetrized as fol-
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lows:

DS = SA HD = AH SH =
1

4
I −D2 HS =

1

4
I − A2. (3.4.18)

Proposition 3.4.4 The inverse of the single-layer potential operator is bounded, i.e.,

cS1 ⟨S−1w,w⟩L2(ℬR) ≤ ∥w∥2
H1/2(ℬR) ∀w ∈ H1/2(ℬR). (3.4.19)

Proposition 3.4.5 The Steklov-Poincarè operator, TR, is H1/2(ℬR)-elliptic, i.e.,

⟨TRw,w⟩L2(ℬR) ≥ cH1 ∥w∥2
H1/2(ℬR) ,∀w ∈ H1/2(ℬR). (3.4.20)

Proposition 3.4.6 The operator S is self-adjoint, and there exists the self-adjoint

square root S1/2 satisfying S = S1/2S1/2 and
∥∥S−1/2w

∥∥
L2(ℬR)

= ∥w∥S−1.

The following theorem is also proved in [98], and due to its importance in proving

Theorem 3.4.8, we present it here with an expansion of the details and reasoning:

Theorem 3.4.7 For all w ∈ H1/2(ℬR), the following estimate holds:

∥∥∥∥(1

2
I +D

)
w

∥∥∥∥
S−1

≤ cK ∥w∥S−1 , (3.4.21)

where cK =
1

2
+

√
1

4
− cH1 ⋅ cS1 > 0.

Proof :
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We first note that

∥∥∥∥(1

2
I +D

)
w

∥∥∥∥2

S−1

= ⟨S−1
(1

2
I +D

)
w,
(1

2
I +D

)
w⟩L2(ℬR) (Def’n of norm)

= ⟨
(1

2
I + A

)
S−1

(1

2
I +D

)
w,w⟩L2(ℬR) (Symmetry in Eq ref)

= ⟨TRw,w⟩L2(ℬR) − ⟨Hw,w⟩L2(ℬR). (3.4.22)

Now we further establish the properties of the inner products as in [98],

⟨TRw,w⟩L2(ℬR) = ⟨S−1/2STRw, S−1/2w⟩L2(ℬR)

≤
∥∥S−1/2STRw

∥∥
L2(ℬR)

∥∥S−1/2w
∥∥
L2(ℬR)

= ∥STRw∥S−1 ∥w∥S−1

=

∥∥∥∥(1

2
I +D

)
w

∥∥∥∥
S−1

∥w∥S−1 .

⟨Hw,w⟩L2(ℬR) ≥ cH1 ∥w∥2
H1/2(ℬR)

≥ cH1 c
S
1 ⟨S−1w,w⟩L2(ℬR)

= cH1 c
S
1 ∥w∥2

S−1 .

Then we can rewrite (3.4.22) as

∥∥∥∥(1

2
I +D

)
w

∥∥∥∥2

S−1

= ⟨TRw,w⟩L2(ℬR) − ⟨Hw,w⟩L2(ℬR)

≤
∥∥∥∥(1

2
I +D

)
w

∥∥∥∥
S−1

∥w∥S−1 − cH1 cS1 ∥w∥2
S−1 . (3.4.23)
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If we let a =
∥∥(1

2
I +D

)
w
∥∥
S−1 > 0 and b = ∥w∥S−1 > 0, then we have

a2 ≤ ab− cH1 cS1 b2

a2

b2
≤ a

b
− cH1 cS1(a

b

)2 − a

b
≤ −cH1 cS1(a

b

)2 − a

b
+

1

4
≤ 1

4
− cH1 cS1(a

b
− 1

2

)2 ≤ 1

4
− cH1 cS1

1

2
−
√

1

4
− cH1 cS1 ≤

a

b
≤ 1

2
+

√
1

4
− cH1 cS1 .

Therefore we have

∥∥(1
2
I +D

)
w
∥∥
S−1

∥w∥S−1

≤ 1

2
+

√
1

4
− cH1 cS1 = cK .□

Before we frame the variational problem in the next chapter, we prove the following

theorem, similar to Cakoni and Colton’s Theorem 5.20 in [10]:

Theorem 3.4.8 The Steklov-Poincarè operator, TR, is a bounded, linear operator

from H1/2(ℬR) → H−1/2(ℬR). Also, the principal part of TR, referred to as TR,P ,

satisfies the coercivity estimate

−⟨TR,Pu, u⟩ ≥ C ∥u∥2
H1/2(ℬR)

for some C > 0, such that the difference TR − TR,P is a compact operator from

H1/2(ℬR)→ H−1/2(ℬR).

Proof :

To prove boundedness of the Steklov-Poincarè operator, TR, we use the equivalent
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norms of the Sobolev spaces defined earlier, as well as Proposition 3.4.6., which yields

∥TRw∥S =
√
⟨STRw, TRw⟩L2(ℬR)

=

√
⟨SS−1

(1

2
I +D

)
w, S−1

(1

2
I +D

)
w⟩L2(ℬR)

=

√
⟨S−1/2

(1

2
I +D

)
w, S−1/2

(1

2
I +D

)
w⟩L2(ℬR)

≤
√∥∥∥∥(1

2
I +D

)
w

∥∥∥∥2

S−1

=

∥∥∥∥(1

2
I +D

)
w

∥∥∥∥
S−1

≤ cK ∥w∥S−1 . (3.4.24)

Linearity follows directly from the expression in (3.4.14).

At this point, having shown boundedness and linearity, we define the principal

part of TR to be TR,P , which corresponds to the Laplacian portion of the operator.

Ideally, for our problem, this would be the case where �2 = 0 in (3.3.1). How-

ever, because we have defined �2 =
1

(�t)2�
, we note that this does not correspond

to a physical situation, but is only studied in order to help frame the variational

formulation problem. According to Durán et al. in [29], the principal part of this

operator can be associated with the Green’s function for the Laplace equation with

a Neumann boundary condition enforced at the ground plane (i.e., referring again to

(3.3.1), �2 = 0 implies A = 0 and that the normal derivative of the Green’s function

must be equal to zero at the ground plane). The Green’s function, as shown in Durán

in [29], is

G(r∣r′) =
1

2�
logR +

1

2�
logR∗.

In fact, this idea is supported by Khoromskij and Wittum in [60], where they seek

a simpler, alternate expression for the Steklov-Poincarè operator previously derived

in (3.4.14). They derive an explicit integral representation for the approximation of

the Steklov-Poincarè operator whose principal part is the related Green’s function.
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Furthermore, this explicit representation is in hypersingular form. This idea is also

explored in [57] and [59].

Durán goes on to state the following:

That Green’s function has been obtained by a principle of symmetry with
respect to the x1−axis (i.e. x−axis). Thus, the continuity and coercivity
properties of its associated integral operator (i.e. the principal part of the
operator) on S+ (i.e. the half-circle, or our semicircle ℬR) are reduced to
the whole circle S. [29]

This makes sense in the context of the Laplacian in that it is radially symmetric [73].

Thus, we can study the properties of the case where �2 = 0 for a disk, denoted ℬDISK,

which is comparable to our operator TR,P extended to the whole circle. We note that

if u is a radiating solution outside a disk ℬDISK of radius R, then we can separate

variables and obtain

u(r, �) =
∞∑
−∞

anr
−nein�, r ≥ R and 0 ≤ � ≤ 2�.

As in Cakoni and Colton in [10], we can state that for data on the disk

u∣∂ℬDISK
=
∞∑
−∞

bne
in�;

with coefficients bn = anR
−n, the mapping of TR,P : u→ ∂u

∂n
yields

TR,Pu = −
∞∑
−∞

n

R
bne

in�.

Then it follows as in Cakoni and Colton that for a disk ℬDISK,

−
∫
∂ℬDISK

TR,Pww̄ds ≥ C ∥w∥2
H1/2(∂ℬDISK) .
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Then through an extension argument we can establish

−
∫
∂ℬR

TR,Pww̄ds ≥ C ∥w∥2
H1/2(∂ℬR) .

It can then be shown from several sources (see, for example, [29] or [10]) that TR−TR,P
is a compact operator from H1/2(ℬR) → H−1/2(ℬR). These properties are also more

explicitly stated and proved in Kirsch in [61], as well as in Hettlich in [43]. □

As a result, this theorem will help us prove the well-posedness in the next chapter.

Even though we do not have an explicit series representation for the operator, we used

an important idea in that the principal part of the Steklov-Poincarè operator satisfies

a coercivity estimate. This will be discussed again during the variational formulation

chapter.

3.5 Green’s Function Analysis: Derivative and Singularity Evaluation

Having both the integral representation of the solution in the exterior domain

in (3.2.10), as well as the Green’s function in (3.3.7), we are ready to establish the

existence of the normal derivatives, which will be required for numerical implementa-

tion. Singularities will also need to be addressed during the boundary integral matrix

construction.

The normal derivative of the first two terms of the Green function as expressed in

(3.3.7) is given by:

∂

∂nr′

[ 1

2�
K0(�R)− 1

2�
K0(�R∗)

]
= − �

2�
K1(�R)

(x′ − x, y′ − y)√
(x′ − x)2 + (y′ − y)2

⋅ n̂r′

+
�

2�
K1(�R∗)

(x′ − x, y′ + y)√
(x′ − x)2 + (y′ + y)2

⋅ n̂r′

where n̂r′ =
r′

∥r′∥ , which is the outward unit normal vector to the boundary at the

51



point r′. At this point, we address how to evaluate a singularity for the normal

derivative evaluated at these first two terms of the Green’s function. Specifically, we

will be interested in evaluating the normal derivative as R and R∗ both approach

zero. We will derive the case for R→ 0 and R∗ can be derived analogously.

We first note that

cos � = − (x′ − x, y′ − y)√
(x′ − x)2 + (y′ − y)2

⋅ n̂r′

where � is the angle between −n̂r′ and r − r′, and this is a common vector calculus

result that can be derived from the law of cosines. We also use the fact that for

small arguments, K0(x) ≈ − log(x), so it follows that K1(x) ≈ 1

x
. It is also noted in

Wiersig in [110] that cos � =
1

2
� ∣r − r′∣, where � is the curvature of the curve at the

boundary.

Therefore, taking the limit as R→ 0, we have

lim
R→0

(
− �

2�

)
K1(�R)

(x′ − x, y′ − y)√
(x′ − x)2 + (y′ − y)2

⋅ n̂r′

= lim
R→0

(
− �

2�

)( 1

�R

)(
− 1

2
� ∣r − r′∣

)
= lim

R→0

(
− �

2�

)( 1

�R

)(
− 1

2
�R
)

= lim
R→0

1

4�
�.

However, the curvature � is finite, and furthermore is 0 for straight line segments,

which we will be using for the boundary element method, so we can conclude that

lim
R→0

(
− �

2�

)
K1(�R)

(x′ − x, y′ − y)√
(x′ − x)2 + (y′ − y)2

⋅ n̂r′ = 0.

which we will need to evaluate the expression at a singularity. As previously stated,
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this will also apply evaluating the case when R∗ → 0.

Also, the previous result, although not explicitly proven as we have done, is used

in such works by Schneider and Salon in [91] and [93] and [90], and Koopmann and

Benner in [63]. They implement these results in the boundary integral formulation

phase in dealing with singularities of modified bessel functions of the second kind.

The derivatives of the third term of the Green’s function expression in (3.3.7) can

be expressed as follows:

∂G3

∂y
=
∂G3

∂y′
= i
[(A

B

)2
e−

A
B

(y′+y)√
(A
B

)2 − �2

cos
(
∣x− x′∣

√(
A

B

)2

− �2
)]
.

∂G3

∂x′
= i
[A
B
e−

A
B

(y′+y) sin
(
∣x− x′∣

√(
A

B

)2

− �2
)]
.

∂G3

∂x
= −∂G3

∂x′
.

The derivatives of the fourth term of the Green’s function expression in (3.3.7)

can be expressed as follows for y and y′:

∂G4

∂y
=
∂G4

∂y′
= −A

B

�

2�
e−

A
B

(y′+y)

∫ y′+y

−∞
K1(�

√
(x′ − x)2 + �2)

�e
A
B
�√

(x′ − x)2 + �2
d�

+
�

2�
K1(�

√
(x′ − x)2 + (y′ + y)2)

y′ + y√
(x′ − x)2 + (y′ + y)2

.

The derivatives of the fourth term of the Green’s function expression in (3.3.7) can

be expressed as follows for x and x′:

∂G4

∂x
=
�

�
e−

A
B

(y′+y)

∫ y′+y

−∞

[
K1(�

√
(x′ − x)2 + �2)

�e
A
B
�(x′ − x)(

(x′ − x)2 + �2
)3/2
−

�K ′1(�
√

(x′ − x)2 + �2)
�e

A
B
�(x′ − x)(

(x′ − x)2 + �2
)]d�,
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∂G4

∂x′
=
�

�
e−

A
B

(y′+y)

∫ y′+y

−∞

[
−K1(�

√
(x′ − x)2 + �2)

�e
A
B
�(x′ − x)(

(x′ − x)2 + �2
)3/2

+

�K ′1(�
√

(x′ − x)2 + �2)
�e

A
B
�(x′ − x)(

(x′ − x)2 + �2
)]d�.

Once again, in dealing with the singularities for these expressions in the boundary

integral formulation phase, we can refer to the works cited previously, or Ramesh and

Lean in [86].

At this point, we can discuss an alternate expression for the fourth term of the

Green’s function for more effective computation. This is done in order to “isolate the

poles” and “adequately treat the slow decrease at infinity” when y′ + y = 0, which

would occur when on the impedance plane (Γext) [42]. For the case when
∣∣A
B

∣∣ > ∣�∣,
we can apply Hein’s technique to our case and get:

G4(r∣r′) =
1

�

∫ ∞
0

( e−
√
�2+�2(y′+y)

(A
B
−
√
�2 + �2)

−
A
B√

(A
B

)2 − �2

⋅ e
−A
B
�(y′+y)/

√
(A
B

)2−�2√
(A
B

)2 − �2 − �

)
×

cos(�(x′ − x))d� +
A
B

2�
√

(A
B

)2 − �2

e−
A
B

(y′+y)×

{
ei(x−x

′)
√

(A
B

)2−�2
Ei
[A
B

(y′ + y)− i
√(A

B

)2 − �2(x− x′)
]

+ e−i(x−x
′)
√

(A
B

)2−�2
Ei
[A
B

(y′ + y) + i

√(A
B

)2 − �2(x− x′)
]}

,

where Ei denotes the exponential integral function.
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It follows that the derivative with respect to x′ of the preceding term is

∂G4

∂x′
= − 1

�

∫ ∞
0

( e−
√
�2+�2(y′+y)

(A
B
−
√
�2 + �2)

−
A
B√

(A
B

)2 − �2

⋅ e
−A
B
�(y′+y)/

√
(A
B

)2−�2√
(A
B

)2 − �2 − �

)
×

sin(�(x′ − x))d� +
A
B

2�
√

(A
B

)2 − �2

e−
A
B

(y′+y)×

{
iei(x−x

′)
√

(A
B

)2−�2
Ei
[A
B

(y′ + y)− i
√(A

B

)2 − �2(x− x′)
]

− ie−i(x−x
′)

√(
A
B

)2

−�2

Ei
[A
B

(y′ + y) + i

√(A
B

)2 − �2(x− x′)
]}

,

and with respect to x is

∂G4

∂x
=

1

�

∫ ∞
0

( e−
√
�2+�2(y′+y)

(A
B
−
√
�2 + �2)

−
A
B√

(A
B

)2 − �2

⋅ e
−A
B
�(y′+y)/

√
(A
B

)2−�2√
(A
B

)2 − �2 − �

)
×

sin(�(x′ − x))d� +
A
B

2�
√

(A
B

)2 − �2

e−
A
B

(y′+y)×

{
− iei(x−x′)

√
(A
B

)2−�2
Ei
[A
B

(y′ + y)− i
√(A

B

)2 − �2(x− x′)
]

+ ie−i(x−x
′)
√

(A
B

)2−�2
Ei
[A
B

(y′ + y) + i

√(A
B

)2 − �2(x− x′)
]}

.

These are obviously complicated terms to analyze and implement, and we leave the

computations with respect to the y′ and y variable to the numerical phase.

In summary, the normal derivatives of the Green’s function can be evaluated at

any point, provided the gradient can be calculated, by observing that

∂G

∂nr′
=
(∂G
∂x′

,
∂G

∂y′

)
⋅ n̂r′ ,

∂G

∂nr
=
(∂G
∂x

,
∂G

∂y

)
⋅ n̂r.
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Furthermore, we mention that the hypersingular operator will require the computa-

tion of
∂

∂nr

∂G(r∣r′)

∂nr′
. This will require the values of

∂2G

∂x∂x′
,
∂2G

∂y∂x′
,
∂2G

∂x∂y′
, and

∂2G

∂y∂y′

to be computed. These can also be computed during the computational phase, but

care is needed in evaluating the singularities and ensuring the proper expression is

obtained.
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IV. Variational Formulation

4.1 Recasting the Boundary Value Problem

Since the ultimate goal of the previous mathematical formulation was to lay the

foundation to establish existence and uniqueness, in this section we find a weak so-

lution of the variational form. We first note that on the artificial boundary, ℬR, the

normal derivative of the total electric field satisfies the continuity condition:

∂u

∂n

∣∣∣∣
r=R

=
∂ui

∂n

∣∣∣∣
r=R

+
∂us

∂n

∣∣∣∣
r=R

. (4.1.1)

Recall the expression derived previously in (3.4.10):

'(r) = S−1(
1

2
I +D)u(r)− S−1[(Nf)(r) + (Pℎ)(r)]; r ∈ ℬR,

where the Newton Potential and impedance plane terms are

(Nf)(r) =

∫∫
UR
f(r′)G(r∣r′)dS ′; r ∈ ℬR, (4.1.2)

(Pℎ)(r) = − 1

A

∫
Γext

ℎ(r′)
∂G(r∣r′)

∂y′
dx′; r ∈ ℬR, (4.1.3)

where f(r) = �2ũs,n+1 and ℎ(rs) = �t
�2ũs,n+1 − ˜̇us,n+1. This allows us to write

(Nũs,n+1)(r) = �2

∫∫
UR
ũs,n+1G(r∣r′)dS ′; r ∈ ℬR, (4.1.4)

(Pũs,n+1)(r) = − 1

A

∫
Γext

[
�t
�2ũs,n+1 − ˜̇us,n+1

]
∂G(r∣r′)

∂y′
dx′; r ∈ ℬR. (4.1.5)
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Then we can define

(ΦRũ
s,n+1)(r) = (Nũs,n+1)(r) + (Pũs,n+1)(r),

and note that since the Newton Potential and impedance plane terms are bounded,

then ΦR is bounded. We can also define

(ΨRũ
s,n+1)(r) = S−1(Φũs,n+1)(r),

and note that since S−1 is bounded (see Proposition 3.4.4.), then ΨR is bounded.

Now (3.4.10) becomes

'(r) =
∂u(r)

∂nr
= (TRu)(r)− (ΨRũ

s,n+1)(r); r ∈ ℬR.

Applying this to the continuity property in (4.1.1) yields

∂u

∂n

∣∣∣∣
r=R

=
∂ui

∂n

∣∣∣∣
r=R

+ (TR(u− ui))− (ΨRũ
s,n+1); r ∈ ℬR. (4.1.6)

This is the transparent boundary condition on ℬR, so we may now rewrite (3.1.5) as

⎧⎨⎩

−Δun+1 + �2"ru
n+1 = �2"rũ

n+1 in ΩR,

�t
�2un+1 +
�

�

∂un+1

∂n
= �t
�2ũn+1 − ˜̇un+1 on S,

∂un+1

∂n
− TRun+1 =

∂ui

∂n
− (ΨRũ

s,n+1)− TR(ui) on ℬR.

(4.1.7)

Now we seek to solve (4.1.7) through a variational method.
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4.2 Variational Formulation

Instead of enforcing the boundary conditions on the test function space V as in

[105], we choose to define the subspace V simply as H1(ΩR), which has the H1-norm,

i.e.,

∥u∥V = ∥u∥H1(ΩR) .

The variational formulation of (4.1.7) will be to find u ∈ V such that

bTM(u, v) = F (v) ∀v ∈ V. (4.2.1)

Note that because we are enforcing Robin boundary conditions on the surface S, these

boundary conditions are considered natural and do not need to be incorporated into

the solution space V . That is, the boundary conditions “appear naturally” and are

automatically incorporated into the boundary integral expressions and are satisfied

by weak solutions [46]. We first must construct the sesquilinear form bTM(u, v) as

well as the conjugate linear functional F (v). To do this, we multiply (4.1.7) by a test

function v ∈ V to obtain (we suppress the n+ 1 superscript):

−
∫

ΩR

Δuv̄dxdy + �2

∫
ΩR

"ruv̄dxdy = �2

∫
ΩR

"rũv̄dxdy (4.2.2)

�t
�2

∫
S

uv̄dℓ+
�

�

∫
S

∂u

∂n
v̄dℓ = �t
�2

∫
S

ũv̄dℓ−
∫
S

˜̇uv̄dℓ (4.2.3)∫
ℬR

∂u

∂n
v̄dℓ−

∫
ℬR
TRuv̄dℓ =

∫
ℬR

∂ui

∂n
v̄dℓ−

∫
ℬR

ΨRũ
sv̄dℓ−

∫
ℬR
TR(ui)v̄dℓ

(4.2.4)

Noting Green’s identity:

∫
ΩR

∇u ⋅ ∇v̄dxdy =

∫
ℬR∪S

∂u

∂n
v̄dℓ−

∫
ΩR

Δuv̄dxdy,
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we can rewrite (4.2.2) as

∫
ΩR

∇u ⋅ ∇v̄dxdy −
∫
ℬR∪S

∂u

∂n
v̄dℓ+ �2

∫
ΩR

"ruv̄dxdy = �2

∫
ΩR

"rũv̄dxdy, or (4.2.5)∫
ΩR

∇u ⋅ ∇v̄dxdy −
(∫
ℬR

∂u

∂n
v̄dℓ+

∫
S

∂u

∂n
v̄dℓ
)

+ �2

∫
ΩR

"ruv̄dxdy

= �2

∫
ΩR

"rũv̄dxdy. (4.2.6)

Now substituting the known values from (4.2.3) and (4.2.4):

∫
S

∂u

∂n
v̄dℓ =

�

�

[
�t
�2

∫
S

ũv̄dℓ−
∫
S

˜̇uv̄dℓ− �t
�2

∫
S

uv̄dℓ

]
, and∫

ℬR

∂u

∂n
v̄dℓ =

∫
ℬR
TRuv̄dℓ+

∫
ℬR

∂ui

∂n
v̄dℓ−

∫
ℬR

ΨRũ
sv̄dℓ−

∫
ℬR
TR(ui)v̄dℓ

and letting

J =
∂ui

∂n

∣∣∣∣
r=R

− TRui,

we obtain for (4.2.2):

∫
ΩR

∇u ⋅ ∇v̄dxdy −
[∫
ℬR
TRuv̄dℓ+

∫
ℬR
Jv̄dℓ−

∫
ℬR

ΨRũ
sv̄dℓ

+
�

�
�t
�2

∫
S

ũv̄dℓ− �

�

∫
S

˜̇uv̄dℓ− �

�
�t
�2

∫
S

uv̄dℓ

]

+ �2

∫
ΩR

"ruv̄dxdy = �2

∫
ΩR

"rũv̄dxdy. (4.2.7)

Observing that for � ∕= 0, gathering appropriate terms yields

∫
ΩR

∇u ⋅ ∇v̄dxdy −
∫
ℬR
TRuv̄dℓ+

�

�
�t
�2

∫
S

uv̄dℓ+ �2

∫
ΩR

"ruv̄dxdy

=

∫
ℬR
Jv̄dℓ−

∫
ℬR

ΨRũ
sv̄dℓ+

�

�
�t
�2

∫
S

ũv̄dℓ− �

�

∫
S

˜̇uv̄dℓ+ �2

∫
ΩR

"rũv̄dxdy.
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So now we define the sesquilinear form

bTM(u, v) =

∫
ΩR

∇u ⋅ ∇v̄dxdy −
∫
ℬR
TRuv̄dℓ+

�

�
�t
�2

∫
S

uv̄dℓ+ �2

∫
ΩR

"ruv̄dxdy,

(4.2.8)

as well as the bounded conjugate linear functional term

F (v) =

∫
ℬR
Jv̄dℓ−

∫
ℬR

ΨRũ
sv̄dℓ+

�

�
�t
�2

∫
S

ũv̄dℓ− �

�

∫
S

˜̇uv̄dℓ+ �2

∫
ΩR

"rũv̄dxdy,

(4.2.9)

and we follow [10] to rewrite bTM(u, v) = bTM1(u, v) + bTM2(u, v), where

bTM1(u, v) =

∫
ΩR

(
∇u ⋅ ∇v̄ + uv̄

)
dxdy −

∫
ℬR
TR,Puv̄dℓ

bTM2(u, v) =
(
− 1
) ∫

ΩR

uv̄dxdy −
∫
ℬR

(
TR − TR,P

)
uv̄dℓ (4.2.10)

+
�

�
�t
�2

∫
S

uv̄dℓ+ �2

∫
ΩR

"ruv̄dxdy. (4.2.11)

Now the problem becomes finding u ∈ V such that

bTM1(u, v) + bTM2(u, v) = F (v) ∀v ∈ V. (4.2.12)

The motivation for splitting up the sesquilinear form bTM(u, v) (as well as splitting

up the Steklov-Poincarè operator, TR) is that the entire term itself is not strictly

coercive, but a portion of it (i.e. bTM1(u, v)) can be shown to be. We will also need

to show that bTM2(u, v) is a compact operator. This is similar to the idea discussed

by Kress in [64] of decomposing an integral operator into a compact operator and a

operator with a bounded inverse. He notes that this idea goes as far back as 1919,

and he notes its use in the context of nonsmooth boundaries with edges and corners.

However, we will also see that this decomposition allows us to show that bTM(u, v)

satisfies a G̊arding’s inequality. This is a class of problems where the sesquilinear
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term can be written as the sum of a coercive term and a compact perturbation [25].

At this point, we present the well-known Lax-Milgram Lemma from Cakoni and

Colton in [10], which will be used to prove the well-posedness of the established

problem:

Theorem 4.2.1 (Lax-Milgram Lemma) Assume that b is a bilinear functional map-

ping V × V → ℂ for which there exist constants D1, D2 > 0 such that

∣b(u, v)∣ ≤ D1 ∥u∥V ∥v∥V ∀u, v ∈ V (4.2.13)

and

b(u, u) ≥ D2 ∥u∥2
V ∀u ∈ V. (4.2.14)

Then, for every bounded conjugate linear functional F : V → ℂ there exists a unique

element u ∈ V such that

b(u, v) = F (v) ∀v ∈ V. (4.2.15)

Furthermore, ∥u∥V ≤ D3 ∥F∥V ′, for D3 > 0, a constant independent of F .

We will also require use of the following theorem established in Cakoni and Colton

in [10]:

Theorem 4.2.2 (Trace Theorem) Let D ⊂ ℝ2 be a simply connected bounded domain

with ∂D in class C2. Then there exists a positive constant D4 such that

∥u∥H1/2(∂D) ≤ D4 ∥u∥H1(D) ∀u ∈ H1(D).

Not only does the trace theorem state the trace operator can be “extended as a contin-

uous mapping from H1(D) → H1/2(∂D)”, but also “this extension has a continuous

right inverse” [10]. That means that for any f ∈ H1/2(∂D), there exists a u ∈ H1(D)
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such that the trace of u is f , and ∥u∥H1(D) ≤ D5 ∥f∥H1/2(∂D), where D5 > 0 is a

constant independent of f [10]. This will be extremely important when proving the

coercivity and continuity properties of the sesquilinear term.

We are now ready to prove our main theorem.

Theorem 4.2.3 The variational problem (4.2.1) is well-posed: a solution u ∈ V

exists, is unique, and there exists a C > 0, such that

∥u∥ ≤ C
[ ∥∥ui∥∥+ ∥ũs∥+ ∥ũ∥+

∥∥˜̇u
∥∥+ ∥"rũ∥

]
.

Proof:

We first must show that bTM1(u, v) is strictly coercive, i.e. (4.2.14):

bTM1(u, u) =

∫
ΩR

(
∇u ⋅ ∇ū+ uū

)
dxdy −

∫
ℬR
TR,Puūdℓ

≥ ∥u∥2
H1(ΩR) +D6 ∥u∥2

H1/2(ℬR)

≥ ∥u∥2
H1(ΩR) +D7 ∥u∥2

H1(ΩR)

≥ (1 +D7) ∥u∥2
H1(ΩR) .
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We also show that bTM1(u, v) is bounded, or continuous, i.e. (4.2.13):

∣bTM1(u, v)∣ =
∣∣∣∣∫

ΩR

(
∇u ⋅ ∇v̄ + uv̄

)
dxdy −

∫
ℬR
TR,Puv̄dℓ

∣∣∣∣
≤
∣∣∣∣∫

ΩR

(
∇u ⋅ ∇v̄ + uv̄

)
dxdy

∣∣∣∣+

∣∣∣∣∫
ℬR
TR,Puv̄dℓ

∣∣∣∣
≤
∫

ΩR

∣∇u ⋅ ∇v̄∣ dxdy +

∫
ΩR

∣uv̄∣ dxdy +

∣∣∣∣∫
ℬR
TR,Puv̄dℓ

∣∣∣∣
≤ ∥∇u∥L2 ∥∇v∥L2 + ∥u∥L2 ∥v∥L2 +D8 ∥u∥H1/2(ℬR) ∥v∥H1/2(ℬR)

≤ ∥u∥H1(ΩR) ∥v∥H1(ΩR) +D9 ∥u∥H1(ΩR) ∥v∥H1(ΩR)

= (1 +D9) ∥u∥H1(ΩR) ∥v∥H1(ΩR) .

Thus, as in Cakoni and Colton in [10], we may apply the Lax-Milgram Lemma and

state there exists a bijective bounded linear operator B1 : V → V with bounded

inverse such that

bTM1(u, v) = ⟨B1u, v⟩ ∀v ∈ V.

For bTM2(u, v), we split up the individual terms and show that each is a compact

operator, and deduce that a linear combination of these operators is compact as well.

We introduce the bounded linear operator B2 : V → V :

bTM2(u, v) = ⟨B2u, v⟩

=
(
− 1
)
⟨u, v⟩L2(ΩR) − ⟨

(
TR − TR,P

)
u, v⟩+

(�
�
�t
�2

)
⟨u, v⟩L2(ΩR)

+ �2⟨"ru, v⟩L2(ΩR) ∀v ∈ V.

Cakoni and Colton in [10] prove that the portion of the operator representing ⟨u, v⟩L2(ΩR)

is compact, based on a lemma stating the injection or imbedding of H1(ΩR) into

L2(ΩR) is compact. It was established earlier in Theorem 3.4.8 that TR − TR,P is a

compact operator.
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Following Monk in [75], we define the space L2
"r(ΩR) with inner product as

⟨u, v⟩L2
"r

(ΩR) = ⟨"ru, v⟩ ∀u, v ∈ L2
"r(ΩR).

Then the norm on L2
"r(ΩR) is equivalent to the standard L2(ΩR) norm. This estab-

lishes that the term �2⟨"ru, v⟩L2(ΩR) is compact. Therefore, we can deduce that the

operator B2, a linear combination of compact operators, is compact. We establish

that F (v) is bounded:

∣F (v)∣ =
∣∣∣∣∫
ℬR
Jv̄dℓ−

∫
ℬR

ΨRũ
sv̄dℓ+

�

�
�t
�2

∫
S

ũv̄dℓ− �

�

∫
S

˜̇uv̄dℓ+ �2

∫
ΩR

"rũv̄dxdy

∣∣∣∣
≤
∣∣∣∣∫
ℬR
Jv̄dℓ

∣∣∣∣+

∣∣∣∣∫
ℬR

ΨRũ
sv̄dℓ

∣∣∣∣+

∣∣∣∣�� �t
�2

∫
S

ũv̄dℓ

∣∣∣∣+

∣∣∣∣��
∫
S

˜̇uv̄dℓ

∣∣∣∣
+

∣∣∣∣�2

∫
ΩR

"rũv̄dxdy

∣∣∣∣
≤ ∥J∥ ∥v∥+ ∥ΨRũ

s∥ ∥v∥+ C3 ∥ũ∥ ∥v∥+ C4

∥∥˜̇u
∥∥ ∥v∥+ C5 ∥"rũ∥ ∥v∥

≤
∥∥∥∥∂ui∂n

− TRui
∥∥∥∥ ∥v∥+ ∥ΨRũ

s∥ ∥v∥+ C3 ∥ũ∥ ∥v∥+ C4

∥∥˜̇u
∥∥ ∥v∥+ C5 ∥"rũ∥ ∥v∥

≤
∥∥∥∥∂ui∂n

∥∥∥∥ ∥v∥+
∥∥TRui∥∥ ∥v∥+ C2 ∥ũs∥ ∥v∥+ C3 ∥ũ∥ ∥v∥+ C4

∥∥˜̇u
∥∥ ∥v∥

+ C5 ∥"rũ∥ ∥v∥

≤ C1

∥∥ui∥∥ ∥v∥+ C2 ∥ũs∥ ∥v∥+ C3 ∥ũ∥ ∥v∥+ C4

∥∥˜̇u
∥∥ ∥v∥+ C5 ∥"rũ∥ ∥v∥

=
[
C1

∥∥ui∥∥+ C2 ∥ũs∥+ C3 ∥ũ∥+ C4

∥∥˜̇u
∥∥+ C5 ∥"rũ∥

]
∥v∥ .

If we set C̃ = max{C1, C2, C3, C4, C5}, then we have

∣F (v)∣ ≤
[
C̃
∥∥ui∥∥+ C̃ ∥ũs∥+ C̃ ∥ũ∥+ C̃

∥∥˜̇u
∥∥+ C̃ ∥"rũ∥

]
∥v∥

= C̃
[ ∥∥ui∥∥+ ∥ũs∥+ ∥ũ∥+

∥∥˜̇u
∥∥+ ∥"rũ∥

]
∥v∥ .
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Since

∣F (v)∣ ≤ C̃
[ ∥∥ui∥∥+ ∥ũs∥+ ∥ũ∥+

∥∥˜̇u
∥∥+ ∥"rũ∥

]
∥v∥ ,

∥F∥ ≤ C̃
[
∥ui∥ + ∥ũs∥ + ∥ũ∥ +

∥∥˜̇u
∥∥ + ∥"rũ∥

]
. We also can let w ∈ V be the unique

element such that

F (v) = ⟨w, v⟩

which is true due to the Riesz representation theorem.

At this point, we can recast (4.2.12) as finding u ∈ V such that

B1u+B2u = (B1 +B2)u = w. (4.2.16)

Here, we cite McLean in [73], Theorem 2.33, which states in the context of our

problem that if B = B1 + B2, where B1 has a bounded inverse and B2 is compact,

then B is “Fredholm with zero index, and hence the Fredholm alternative holds” for

the equation Bu = w. As a result, we may state uniqueness implies existence.

Thus, in proving uniqueness, bTM(u, u) = 0 implies

bTM(u, u) =

∫
ΩR

∇u ⋅ ∇ūdxdy −
∫
ℬR
TRuūdℓ+

�

�
�t
�2

∫
S

uūdℓ

+ �2

∫
ΩR

"ruūdxdy = 0

=

∫
ΩR

∣∇u∣2 + �2"r ∣u∣2 dxdy −
∫
ℬR
TRuūdℓ+

�

�
�t
�2

∫
S

∣u∣2 dℓ = 0∫
ℬR
TRuūdℓ =

∫
ΩR

∣∇u∣2 + �2"r ∣u∣2 dxdy +
�

�
�t
�2

∫
S

∣u∣2 dℓ. (4.2.17)

We further assume for the cavity filling material ℜ("r) > 0 and ℑ("r) ≤ 0, whereas

for the surface S, we assume � = 1 and a real-valued � where ℑ(�) = 0 on S.

This implies that the imaginary part of the right-hand side of (4.2.17) is less than
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or equal to zero, which, in turn, implies

ℑ
( ∫
ℬR
TRuūdℓ

)
≤ 0.

Here, we apply Theorem 3.2 presented in Ihlenburg in [54]. The idea of this theorem

is also presented in several different sources (see, for example, Theorem 3.6 in Cakoni

and Colton in [10], Theorem 5.5 from Angell and Kirsch in [6], or Theorem 2.12 from

Colton and Kress in [19]). This theorem states that a solution of the variational

formulation is unique if ℑ⟨Gu, u⟩ < 0 holds for all u ∈ H1/2(Γa), u ∕= 0, where

Gu =
∂u

∂n
on Γa, where Γa is an artificial boundary enclosing the desired domain.

Thus, since

ℑ
( ∫
ℬR
TRuūdℓ

)
≤ 0,

then u ≡ 0.

The application, though, is in the context of the exterior boundary value problem

(i.e., u ≡ 0 outside of ΩR). Because we are dealing with an elliptic operator in the

form of the modified Helmholtz operator, the solution is analytic. Ihlenburg further

mentions that the analytic continuation principle (or unique continuation principle in

Cakoni and Colton) can be applied to state u ≡ 0 in the interior (i.e. ΩR). Therefore,

bTM(u, u) = 0 implies u = 0, so the solution is unique, which by the Fredholm

alternative implies existence.

Finally, the Fredholm alternative also implies the boundedness of the inverse of

(B1 +B2), which for constants D0, C > 0 yields

∥u∥ ≤ D0 ∥F∥ ≤ D0

[
C̃
[ ∥∥ui∥∥+ ∥ũs∥+ ∥ũ∥+

∥∥˜̇u
∥∥+ ∥"rũ∥

]]
= C

[ ∥∥ui∥∥+ ∥ũs∥+ ∥ũ∥+
∥∥˜̇u
∥∥+ ∥"rũ∥

]
.
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This completes the proof.□

Thus, we have established well-posedness of the solution: existence, uniqueness,

and an estimate which bounds the solution. From this estimate, a continuous depen-

dence on the initial (or forcing) data can be determined.
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V. Finite Element Analysis

5.1 Construction of the Discrete Problem

Now we transition to constructing the discrete problem from the variational for-

mulation in (4.2.1), which will provide the foundation to solve numerically. Consider

the following statement from Rjasanow and Steinbach in their book The Fast Solution

of Boundary Integral Equations :

When boundary integral equations are approximated and solved numeri-
cally , the study of stability and convergence is the most important issue.
The most popular methods are the Galerkin methods which perfectly fit
to the variational formulation of the boundary integral equations. [89]

Not only does Ihlenburg in his book Finite Element Analysis of Acoustic Scattering

add this is an area of ongoing research, but he also describes exactly the coupling

approach we intend to use:

In practice, one is not necessarily interested in computing the far-field
results directly from the discrete model. Rather, one may use the coupled
finite-infinite element discretization to obtain an approximate solution of
the near field problem in (the bounded domain). In the second step, one
then computes the far-field pattern from the Helmholtz integral equation,
using the numerical solution on a “collection surface” in the near field.
If such an approach is taken, the discretization with infinite elements is
effectively used for “mapping” numerically the far-field behavior onto the
near field. [54]

Applying this to our problem, we previously derived an expression for the fields

exterior to the cavity in (3.2.10), and also obtained a variational formulation for the

near fields in the cavity in the bounded domain (see (4.2.1), (4.2.8), and (4.2.9)).

Once the solution is obtained from the bounded problem, it is applied to obtain the
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desired expression of the far-field. Clearly, the “collection surface” described above

corresponds to our semicircular artificial boundary, ℬR.

The finite element method is one of the “most powerful methods for approximat-

ing solutions to PDEs” [35]. It is based on the fundamental concept of writing the

boundary value problem in weak or variational form, as in (4.2.1), and using the

Galerkin method to solve the equation on a finite dimensional subspace Vℎ of the

solution space V , resulting in a linear, finite system of equations. A basis of piece-

wise polynomials is chosen for the finite dimensional subspace so that the matrix of

the linear system is sparse. We will consider three aspects of constructing Vℎ: the

triangulation of the domain, working with functions vℎ ∈ Vℎ that are “piecewise poly-

nomials”, and creating a basis in the space Vℎ whose functions have small supports

that are easy to describe [18].

For the first aspect, we assume the bounded domain ΩR is covered by a family of

quasiuniform triangular subsets. We define �ℎ = {K} as the partition (or triangula-

tion or mesh) of ΩR where each K ∈ �ℎ represents a triangle (i.e. each finite element).

These finite elements form an exact partition of ΩR; that is, ΩR =
∪
K∈�ℎ K [7].

For an arbitrary triangle K, we denote

ℎK = diam(K) = max{∥x− y∥ ∣ x,y ∈ K},

which corresponds to the length of the longest side. We further define the mesh size,

ℎ, of the partition �ℎ, as

ℎ = max
K∈�ℎ

ℎK ,

and sK as the diameter of the largest circle inscribed in K [7]. A family of triangula-

tions is regular if there exists a constant c0 such that ℎK/sK ≤ c0 for all K and ℎ→ 0

[7]. We further note from Atkinson and Han in [7] that a family of triangulations
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{�ℎ} is quasiuniform if each triangulation �ℎ is regular, and there exists a constant c0

such that

min
K∈�ℎ

ℎK/max
K∈�ℎ

ℎK ≥ c0.

For the second and third aspects in constructing Vℎ, following [104], we have the

finite-dimensional subspace Vℎ of the test space V :

Vℎ = {vℎ ∈ H1(ΩR) : vℎ∣K ∈ P1, K ∈ �ℎ},

where {�ℎj (x)}Nj=1 is a linear nodal basis of Vℎ. Each vℎ ∈ Vℎ is expressed as

vℎ =
N∑
j=1

vj�
ℎ
j (x).

(That is, each vℎ can be written as a linear combination of the basis vectors.) Ac-

cording to Ciarlet in [18], vℎ ∈ Vℎ is the key to all convergence results, and helps yield

simple computations of coefficients. We also note Vℎ is closed in V and Vℎ → V as

ℎ→ 0.

Therefore, having constructed Vℎ, the fully discrete problem is to find unℎ ∈ Vℎ, n =

1, 2, . . . , N , such that

bTM(unℎ, vℎ) = F n(vℎ) ∀vℎ ∈ Vℎ, (5.1.1)

where bTM(unℎ, vℎ) and F n(vℎ) are defined as in (4.2.8) and (4.2.9), respectively. The

bilinear form bTM(unℎ, vℎ) can be written as the sum of a positive definite (coercive) op-

erator and a compact operator, as seen previously for (4.2.12). According to Pomp in

[83] and Hildebrandt and Wienholtz in [44], this is equivalent to satisfying a G̊arding’s

inequality; thus, the discrete problem (5.1.1) has a unique solution and Céa’s lemma
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applies:

∥un − unℎ∥V ≤ C inf
vℎ∈Vℎ

∥un − vℎ∥V . (5.1.2)

Furthermore, “for a mesh width ℎ0 > 0 and a constant C > 0 such that for all ℎ < ℎ0,

the condition of uniform Vℎ ellipticity applies”:

∣bTM(vℎ, vℎ)∣ ≥ C ∥vℎ∥2 ∀vℎ ∈ Vℎ,

which means the linear system has a unique solution due to the Lax-Milgram lemma,

for all ℎ < ℎ0 [44].

This is considered the ℎ-version of the finite element method (and why we write

Vℎ), where we achieve convergence by refining the mesh (ℎ → 0). Another option

is to increase the polynomial degree, referred to as the p-version of FEM. It is also

possible to combine these methods through an ℎp-version. Nevertheless, the choice

of method depends on the knowledge of regularity of the problem [7]. In addition,

since Vℎ ⊂ V for each ℎ, this approximation is conforming [75].

5.2 Error Analysis

Recall Céa’s lemma, (5.1.2), which simply shows that to estimate the finite solution

error (or discretization error) ∥un − unℎ∥V , we only need to estimate the approximation

error ∥un − vℎ∥V . The infimum portion of Céa’s lemma “characterizes the exact

solution in the subspace that is spanned by the FE shape functions. If the infimum

is reached on an element vℎ ∈ Vℎ, then this element is the best approximation of

un in the subspace Vℎ” [54]. We further note that Céa’s lemma is a quasioptimal

error estimate because up to constant C, the discretization error is bounded by the

approximation error. An optimal estimate would be C = 1 [75].

It is clear the Galerkin method is tied directly to the H1 or energy norm, so we
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would expect the best approximation to the solution to be measured in this norm

[36]. H1 error norm is “relevant for exterior problems if one is interested in the

far-field response” [54]. Recall that we are computing the scattered field from a

boundary integral equation in the exterior of the cavity, where we will use the finite

element data on the artificial boundary (or collecting surface), ℬR. Ihlenburg adds

that “since this integral equation involves u and its normal derivative, the H1 error

norm is appropriate for error control in the near field. The situation is different for

interior problems. Here, the L2 error norm may be more appropriate for error control”

[54].

However, the L2 space is not always well-suited for approximating functions in

regions which are rapidly oscillating with small amplitudes. Small details may be lost,

so H1 incorporates not only the difference in the functions but also in the gradients

[38]. Therefore, in the context of the solution to the interior problem, our goal is to

quantify the finite solution error ∥un − unℎ∥ in both the L2 and H1 norms.

In general, there are two types of error estimation: a priori and a posteriori.

An a priori estimate is the “error to be expected in a computation to be done,”

whereas a posteriori estimates are “generated in the course of computation” [87].

More specifically, according to Ihlenburg, a priori error estimation is descibed as

follows :

The error function is estimated in a suitable functional norm without quan-
titative input from the computed solution. The estimates are based on the
approximation properties of the subspace where the numerical solution is
sought and on the stability properties of the differential operator or vari-
ational form. The estimates are generally global; i.e., the error function is
estimated in an integral norm computed over the whole solution domain.
[54]

He adds that a posteriori error estimation can be described as follows:
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The error function is estimated employing the computed solution of the
discrete model as data for the estimates. In practice, the estimates are
usually part of an adaptive mesh refinement methodology. For mesh re-
finement, one needs local information on the error. A posteriori error
estimation should therefore be given in a norm that is defined on a single
element or on a patch of adjacent elements. [54]

Furthermore, the a priori error bounds are asymptotic, not absolute. That is,

“the bounds will not tell how small the error is when the solution is approximated on

a particular mesh. Instead, the bounds show how the error decreases as the mesh is

refined” [36]. Accordingly, local mesh adaptation is not used. This is in contrast to

a posteriori error bounds, which are expressed in terms of residuals of approximate

solution, not in terms of powers of a mesh size or constants depending on the exact

solution. [87]. Therefore, we are providing only a priori error estimates.

Up to now, we have not determined the symmetry of the sesquilinear term bTM(u, v).

It has not been a factor for the existence and uniqueness proofs, so in order to estab-

lish the error bounds for the L2 and H1 norms, we will follow [92] and assume the

more general case that bTM(u, v) is nonsymmetric, but is still bounded as before.

In addition, the following theorem, which is similar to one presented by Van and

Wood in [105], will determine uniform convergence estimates:

Theorem 5.2.1 Let un ∈ V and unℎ ∈ Vℎ be the solutions to (4.2.1) and (5.1.1),

respectively, for F n ∈ V ′. Given � > 0, there exists an ℎ0 = ℎ0(�) such that for all

0 < ℎ < ℎ0, then

∥un − unℎ∥L2(ΩR) ≤ � ∥un − unℎ∥V . (5.2.1)

Furthermore, if given � > 0, there exists an ℎ1 = ℎ1(�) such that for all 0 < ℎ < ℎ1,

then

∥un − unℎ∥V ≤ C� ∥F n∥L2(ΩR) (5.2.2)
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for some positive constant C independent of ℎ. It follows that

∥un − unℎ∥L2(ΩR) ≤ C�2 ∥F n∥L2(ΩR) . (5.2.3)

Also we will use the following Lemmas, the first of which is proven in both [92]

and [105], and the second is proven in [92]:

Lemma 5.2.2 Let D = {f : f ∈ L2(ΩR), ∥f∥L2(ΩR) = 1} be the unit sphere in

L2(ΩR). For f ∈ D, let W be the set of solutions w ∈ V to the auxiliary / adjoint

bilinear form

bTM(w, v) = ⟨f, v⟩ ∀v ∈ V.

Then W is compact in V .

Lemma 5.2.3 Let V be a fixed compact subset of H1(ΩR). Then given any � > 0,

there exists an ℎ0 = ℎ0(�, V ) such that for each u ∈ V and each 0 < ℎ < ℎ0, there

exists a vℎ ∈ Vℎ satisfying

∥u− vℎ∥V ≤ �.

Proof of Theorem 5.2.1:

We use an Aubin-Nitsche duality argument, assuming bTM(u, v) is nonsymmetric,

and follow the reasoning in [92] and [105]. Let b∗TM(⋅, ⋅) be the adjoint bilinear form

to bTM(⋅, ⋅) defined by

b∗TM(u, v) = bTM(v, u) ∀u, v ∈ V.

We know

b∗TM(w∗, v) = ⟨g, v⟩ ∀v ∈ V
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has a unique solution for all g ∈ L2(ΩR), and

∥w∗∥V ≤ c ∥g∥L2(ΩR) .

If we view un − unℎ as a linear functional in L2(ΩR), then

∥un − unℎ∥L2(ΩR) = sup
∥g∥L2(ΩR)=1

⟨un − unℎ, g⟩.

Then, for vℎ ∈ Vℎ, we have

⟨g, un − unℎ⟩ = ⟨un − unℎ, g⟩

= b∗TM(w∗, un − unℎ)

= b∗TM(w∗ − vℎ, un − unℎ) + b∗TM(vℎ, u
n − unℎ)

= bTM(un − unℎ, w∗ − vℎ) + bTM(un − unℎ, vℎ)

= bTM(un − unℎ, w∗ − vℎ)

≤ c ∥un − unℎ∥V ∥w∗ − vℎ∥V .

By using an approximation property argument from Strang and Fix in [99], we

can choose vℎ such that ∥w∗ − vℎ∥V ≤ � ∥w∗∥V . Therefore,

⟨un − unℎ, g⟩ ≤ c ∥un − unℎ∥V � ∥w∗∥V

≤ c1 ∥un − unℎ∥V �c2 ∥g∥L2(ΩR)

sup
∥g∥L2(ΩR)=1

⟨un − unℎ, g⟩ ≤ sup
∥g∥L2(ΩR)=1

c1 ∥un − unℎ∥V �c2 ∥g∥L2(ΩR)

∥un − unℎ∥L2(ΩR) ≤ C� ∥un − unℎ∥V .
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which shows (5.2.1). To show the second estimate (5.2.2), as in [92] and [105], we set

F̂ n =
F n

∥F n∥L2(ΩR)

, ûn =
un

∥F n∥L2(ΩR)

, ûnℎ =
unℎ

∥F n∥L2(ΩR)

.

Then we have the corresponding variational problems

bTM(ûn, v) = F̂ n(v) ∀v ∈ V,

bTM(ûnℎ, vℎ) = F̂ n(vℎ) ∀vℎ ∈ Vℎ,

for which we apply Céa’s lemma,

∥ûn − ûnℎ∥V ≤ C inf
vℎ∈Vℎ

∥ûn − vℎ∥V .

From Lemma 5.2.2, the set of solutions for bTM(ûn, v) = F̂ n(v),
∥∥∥F̂ n

∥∥∥
L2(ΩR)

= 1,

is compact in V , thus we can apply the density argument in Lemma 5.2.3 to get

inf
vℎ∈Vℎ

∥ûn − vℎ∥V ≤ �

for 0 < ℎ < ℎ0(�, ûn). Thus we conclude that

∥ûn − ûnℎ∥V ≤ C�.

Since ∥ûn − ûnℎ∥V =
∥un − unℎ∥V
∥F n∥L2(ΩR)

, then

∥un − unℎ∥V ≤ C� ∥F n∥L2(ΩR) .□

In summary, we are generating a priori error estimates, and are simply applying

previously established theory to confirm the error bounds for our problem.
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5.3 Stability Analysis

For stability analysis, we initially follow Van and Wood in [105] precisely and ex-

press the Newmark scheme in a three-step formulation. We start with the discretized

PDE:

−Δun+2 + �2"ru
n+2 = �2"rũ

n+2

= �2"r

[
un+1 + �tu̇n+1 +

(�t)2

2
(1− 2�)ün+1

]
.

Using (3.1.7) to remove u̇n+1 and (3.1.4) to remove ˜̇un+1, we obtain

−Δun+2 + �2"ru
n+2

= �2"r

[
un+1 + �tu̇n + (�t)2(1− 
)ün + (�t)2
ün+1 +

(�t)2

2
(1− 2�)ün+1

]
.

Using (3.1.3) to remove u̇n, followed by using (3.1.6) to remove ün+1 and ün+1 sepa-

rately, and finally applying (3.1.5) to remove ũn+1 and ũn separately, we obtain

�Δun+2 + (
1

2
− 2� + 
)Δun+1 + (

1

2
+ � − 
)Δun = ��2"r(u

n+2 − 2un+1 + un).

Therefore, the final variational form of this equation, fully discretized in both space

and time, using unℎ ∈ Vℎ, is

1

(�t)2

(
"r(u

n+2
ℎ − 2un+1

ℎ + unℎ), vℎ

)
+ a
(
�Δun+2

ℎ + (
1

2
− 2� + 
)Δun+1

ℎ + (
1

2
+ � − 
)Δunℎ, vℎ

)
= �Gn+2(vℎ) + (

1

2
− 2� + 
)Gn+1(vℎ) + (

1

2
+ � − 
)Gn(vℎ) ∀vℎ ∈ Vℎ.

(5.3.1)
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This is an expected result in the literature, as seen in Van and Wood in [105], Quar-

teroni and Valli in [85], and Allaire in [4]. We further define for our problem

a(unℎ, vℎ) =

∫
ΩR

∇unℎ ⋅ ∇vℎdxdy −
∫
ℬR
TRunℎvℎdℓ+

�

�
�t
�2

∫
S

unℎvℎdℓ

and

Gn(v) =

∫
ℬR
Jnvℎdℓ−

∫
ℬR

ΨRũ
s,nvℎdℓ+

�

�
�t
�2

∫
S

ũnvℎdℓ−
�

�

∫
S

˜̇unvdℓ.

We note that a(unℎ, vℎ) is symmetric, but not strictly coercive. Therefore, as in the

previous section, we rewrite a(unℎ, vℎ) = a1(unℎ, vℎ)+a2(unℎ, vℎ) as the sum of a coercive

term,

a1(unℎ, vℎ) =

∫
ΩR

∇unℎ ⋅ ∇vℎdxdy −
∫
ℬR
TR,Punℎvℎdℓ

and a compact term,

a2(unℎ, vℎ) = −
∫
ℬR

(
TR − TR,P

)
unℎvℎdℓ+

�

�
�t
�2

∫
S

unℎvℎdℓ.

Therefore, as cited earlier in Pomp in [83], as well as Lemma 22.38 in Zeidler in [117],

a(unℎ, vℎ) satisfies a G̊arding’s inequality. That is, there exists two positive constants

� > 0 (Zeidler says � ∈ ℝ) and � > 0 such that

a(u, u) + � ∥u∥2
L2 > � ∥u∥2

V ∀u ∈ V. (5.3.2)

Therefore, the term a(unℎ, vℎ) is symmetric and satisfies a G̊arding’s inequality.

Therefore, according to Allaire in [4], the eigenvalue problem

a(wℎ, vℎ) = �ℎ⟨wℎ, vℎ⟩ ∀vℎ ∈ Vℎ
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has a finite number of eigenvalues satisfying

−� ≤ �ℎ,1 ≤ �ℎ,2 ≤ ⋅ ⋅ ⋅ ≤ �ℎ,M <∞,

where dim Vℎ = M for corresponding orthonormal eigenvectors wℎ,1, wℎ,2, ⋅ ⋅ ⋅ , wℎ,M .

As in [105], writing wi = wℎ,i and �i = �ℎ,i, and replacing wi for vℎ in (5.3.1), we

have

a(unℎ, wi) = a(wi, u
n
ℎ) = �i⟨wi, unℎ⟩ = �i⟨unℎ, wi⟩.

This is also equivalent to, in referring to (5.3.2), as

a(unℎ, wi) + �⟨unℎ, wi⟩ = �i⟨unℎ, wi⟩+ �⟨unℎ, wi⟩ = (�i + �)⟨unℎ, wi⟩

and

1

(�t)2

(
"r(u

n+2
ℎ − 2un+1

ℎ + unℎ), wi

)
+ (�i + �)

(
�Δun+2

ℎ + (
1

2
− 2� + 
)Δun+1

ℎ + (
1

2
+ � − 
)Δunℎ, wi

)
= �Gn+2(wi) + (

1

2
− 2� + 
)Gn+1(wi) + (

1

2
+ � − 
)Gn(wi)

≡ G∗.

(5.3.3)

Without loss of generality, we further assume "r = 1 and G∗ = 0, and from [105], we

have the eigenvalue equation: find �ℎ and uℎ ∈ Vℎ such that

a(uℎ, vℎ) + �⟨uℎ, vℎ⟩ = (�ℎ + �)⟨uℎ, vℎ⟩L2
"r (ΩR) ∀vℎ ∈ Vℎ. (5.3.4)

Now we have that a(⋅, ⋅) + �(⋅, ⋅) is coercive, so we have �i + � > 0, where the
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corresponding orthonormal eigenvectors satisfy

(wi, wj)L2
"r

(ΩR) = �ij

Hence, by replacing unℎ =
∑M

i=1 u
n
i wℎ,i into (5.3.3), we get for i = 1, 2, ...,M ,

1

(�t)2

(
un+2
i − 2un+1

i + uni

)
+ (�i + �)

(
�Δun+2

i + (
1

2
− 2� + 
)Δun+1

i + (
1

2
+ � − 
)Δuni

)
= 0.

(5.3.5)

We rewrite this three-level scheme as

un+2
i =

2− (�i + �)(�t)2(1
2
− 2� + 
)

1 + (�i + �)(�t)2�
un+1
i − 1 + (�i + �)(�t)2(1

2
+ � − 
)

1 + (�i + �)(�t)2�
uni

≡ b11u
n+1
i − b12u

n
i .

Thus, (5.3.5) can be written in matrix form as

⎡⎢⎣un+2
i

un+1
i

⎤⎥⎦ =

⎡⎢⎣b11 −b12

1 0

⎤⎥⎦
⎡⎢⎣un+1

i

uni

⎤⎥⎦ ≡ Bi

⎡⎢⎣un+1
i

uni

⎤⎥⎦ ,
where Bi denotes the iteration matrix, and for stability, the Von Neumann necessary

condition is �(Bi) ≤ 1 where the spectral radius �(Bi) denotes the maximum modulus
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of the eigenvalues of Bi. Therefore, we consider the characteristic equation of Bi:

det(�I −Bi) = det

⎧⎨⎩
⎡⎢⎣� 0

0 �

⎤⎥⎦−
⎡⎢⎣b11 −b12

1 0

⎤⎥⎦
⎫⎬⎭ = 0

= det

⎧⎨⎩
⎡⎢⎣� − b11 b12

−1 �

⎤⎥⎦
⎫⎬⎭ = 0

= �2 − �b11 + b12 = 0.

and calculate the roots of this equation which are the eigenvalues of the matrix Bi.

The roots are

�1,2 =
b11 ±

√
b2

11 − 4b12

2
.

In order to analyze when ∣�1∣ , ∣�2∣ ≤ 1, we must calculate the discriminant, Δ:

Δ = b2
11 − 4b12

=

[
2− (�i + �)(�t)2(1

2
− 2� + 
)

1 + (�i + �)(�t)2�

]2

− 4

[
1 + (�i + �)(�t)2(1

2
+ � − 
)

1 + (�i + �)(�t)2�

]

=
−4(�i + �)(�t)2 + (�i + �)2(�t)4[(
 + 0.5)2 − 4�]

[1 + (�i + �)(�t)2�]2
.

This expression is confirmed in Allaire in [4]. Since the denominator is always positive,

in analyzing the sign of Δ, without loss of generality, we will assume henceforth that

Δ = −4(�i + �)(�t)2 + (�i + �)2(�t)4
[(

 +

1

2

)2 − 4�
]
.

Consider, then, the following two cases: Case 1: Δ ≤ 0
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This implies that the roots �1, �2 are complex conjugates, so we require

∣�1∣ = ∣�2∣ =
∣∣∣∣∣b11

2
+

√
−1
√
b2

11 − 4b12

2

∣∣∣∣∣ =

√
b2

11

4
− b2

11 − 4b12

4
=
√
b12 ≤ 1.

Thus, if b12 ≤ 1, then

b12 =
1 + (�i + �)(�t)2(1

2
+ � − 
)

1 + (�i + �)(�t)2�
≤ 1,

which is equivalent to 1
2

+ � − 
 ≤ �, or 
 ≥ 1

2
. As a result, we have that for this

case,

(�i + �)(�t)2
[(

 +

1

2

)2 − 4�
]
≤ 4 ⇒ 
 ≥ 1

2
.

Case 2: Δ > 0

This is

(�i + �)(�t)2
[(

 +

1

2

)2 − 4�
]
> 4.

Then, without loss of generality, we assume �1 < �2, so we require

−1 ≤ �1 =
b11

2
−
√

Δ

2
<
b11

2
+

√
Δ

2
= �2 ≤ 1.

For −1 ≤ �1, we have

−1 ≤ b11

2
−
√

Δ

2
⇒ 1 + b12 ≥ −b11.

Whereas for �2 ≤ 1 we have

b11 +
√

Δ

2
≤ 1⇒ 1 + b12 ≥ b11.

These together imply that 1 + b12 ≥ ∣b11∣ . However, we see that this results in two
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inequalities that must be satisfied [105]. For 1 + b12 ≥ −b11, we have

1

(�i + �)(�t)2
≥ 


2
− �,

but for 1 + b12 ≥ b11 we have

1

(�i + �)(�t)2
≥ 


2
− � − 1

4
.

Therefore, in order to satisfy both inequalities, we can reduce this to

1

(�i + �)(�t)2
≥ 


2
− �.

To summarize, for Case 1 (Δ ≤ 0), we have

(�i + �)(�t)2
[(

 +

1

2

)2 − 4�
]
≤ 4 implies 
 ≥ 1

2
.

Whereas for Case 2 (Δ > 0) we have

(�i + �)(�t)2
[(

 +

1

2

)2 − 4�
]
> 4 implies (�i + �)(�t)2(2
 − 4�) ≤ 4.

We further assume that � ≥ 0 and 
 ≥ 1

2
. In fact, it is shown in Dautray and

Lions that the scheme is unstable for 
 <
1

2
[24]. We first observe the property

that (�i + �)(�t)2 > 0. Thus, if
[(

 + 1

2

)2 − 4�
]
< 0, then only Case 1 applies.

If
[(

 + 1

2

)2 − 4�
]
≥ 0, then we have stability as long as (2
 − 4�) ≤ 0. These

statements can be combined to deduce that we have unconditional stability for 
 ≤ 2�

for arbitrary �t. However, if 
 > 2�, then we require

max
i

(�i + �)(�t)2 ≤ 4

(2
 − 4�)
,
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which is a conditional situation that depends on finding maxi �i and �.

It can also be shown that when 
 =
1

2
, a conditional stability arises dependent on

finding the values of �i and �. Also, Van and Wood state that 
 =
1

2
is not always

the best value to use, and that in practice, a value of 
 >
1

2
“is often used to damp

out the higher frequencies while preserving the more accurate lower ones” [105].

Therefore, we can summarize these results in a theorem:

Theorem 5.3.1 The Newmark scheme for the TM variational problem is uncondi-

tionally stable for arbitrary �t > 0 satisfying

2� ≥ 
 >
1

2
.

As with the error analysis section, during our stability analysis we have built upon

existing theory and analysis, and refined it to apply to our problem.
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VI. Numerical Simulation

6.1 Finite Element Approximation

The goal in this section is to set the framework for the numerical implementa-

tion. Starting with the triangulation and basis as described earlier, the fully discrete

problem is to find un+1
ℎ ∈ Vℎ, n = 1, 2, . . . , N , such that

bTM(un+1
ℎ , vℎ) = F n+1(vℎ) ∀vℎ ∈ Vℎ, (6.1.1)

where bTM(un+1
ℎ , vℎ) and F n+1(vℎ) are defined as in (4.2.8) and (4.2.9), respectively.

Since each vℎ ∈ Vℎ and un+1
ℎ ∈ Vℎ is expressed as

vℎ =
N∑
j=1

vj�
ℎ
j .

and

un+1
ℎ =

N∑
i=1

un+1
i �ℎi ,

then

bTM(
N∑
i=1

un+1
i �ℎi ,

N∑
j=1

vj�
ℎ
j ) = F n+1(

N∑
j=1

vj�
ℎ
j ).

Due to linearity, this yields

N∑
j=1

vjbTM(
N∑
i=1

un+1
i �ℎi , �

ℎ
j ) =

N∑
j=1

vjF
n+1(�ℎj ).

In order for equality to hold for all vj, it follows that

bTM(
N∑
i=1

un+1
i �ℎi , �

ℎ
j ) = F n+1(�ℎj ) for j = 1, ..., N.
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Applying linearity again yields

N∑
i=1

bTM(�ℎi , �
ℎ
j )u

n+1
i = F n+1(�ℎj ) for j = 1, ..., N.

Then, referring to (4.2.8) to discretize bTM(�ℎi , �
ℎ
j ) , we obtain the matrix equation:

N∑
i=1

([K]ji + �2[M ]ji +
�

�
�t
�2[P ]ji + [Q]ji)u

n+1
i = F n+1

j for j = 1, ..., N. (6.1.2)

Here we define the stiffness matrix

[K]ji =

∫
ΩR

∇�ℎi ⋅ ∇�ℎj dxdy, (6.1.3)

the mass matrix

[M ]ji =

∫
ΩR

"r�
ℎ
i �

ℎ
j dxdy, (6.1.4)

the boundary matrix

[P ]ji =

∫
S

�ℎi �
ℎ
j dℓ, (6.1.5)

and the artificial boundary matrix

[Q]ji = −
∫
ℬR
TR�ℎi �ℎj dℓ. (6.1.6)

The right-hand side vector F n+1
j is

F n+1
j =

∫
ℬR

(
∂ui,n+1

∂n
− TRui,n+1)�ℎj dℓ−

∫
ℬR

ΨRũ
s,n+1�ℎj dℓ

+
�

�
�t
�2

∫
S

ũn+1�ℎj dℓ−
�

�

∫
S

˜̇un+1�ℎj dℓ+ �2

∫
ΩR

"rũ
n+1�ℎj dxdy. (6.1.7)

While the stiffness, mass, and boundary matrix expressions are straightforward

87



for the left-hand side of the equation, the artificial boundary matrix is more difficult

to evaluate. Here, we refer to Steinbach’s work in which he addresses “defining a

computable approximation of the Steklov-Poincarè operator” [96]. The advantage

of his approach is that it is a symmetric approximation that does not involve the

hypersingular operator. Referring back to (3.4.15), we have

TR = S−1ZS−1

where Z = (
1

2
I+D)S and Z : H−1/2(ℬR)→ H1/2(ℬR). We further define for '(r′) =

∂u(r′)

∂nr′
,

(Z')(r) =
1

2

∫
ℬR
G(r∣r′)'(r′)d�′ +

∫
ℬR

∂G(r∣r′)

∂nr′

∫
ℬR
G(r′∣s′)'(s′)d�′s′d�

′. (6.1.8)

Thus, Z admits a direct Galerkin discretization.

We also need to further define Xℎ and Yℎ, where Xℎ is the space of traces of finite

elements vℎ ∈ Vℎ ⊂ V = H1(ΩR) and Yℎ is its dual space. Thus, we have the spaces

of trial functions:

Xℎ = span{�k}Nk=1 ⊂ H1/2(ℬR),

Yℎ = span{ k}Nk=1 ⊂ H−1/2(ℬR).

We see that Xℎ is the approximation of u∣ℬR , consisting of continuous piecewise

linear functions, and Yℎ is the approximation of ∂nu∣ℬR , consisting of constant basis

functions. Furthermore, the “piecewise constant boundary functions can represent

the Neumann derivatives of the piecewise linear functions exactly” [45].
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Therefore, in order to evaluate

[Q]ji = −⟨TR�ℎi , �ℎj ⟩ = −⟨S−1ZS−1�ℎi , �
ℎ
j ⟩ = −I⊤ℎ S−1

ℎ ZℎS
−1
ℎ Iℎ,

we can define

[Sℎ]l̃,k̃ = ⟨S ℎ
k̃
,  ℎ

l̃
⟩L2(ℬR), (6.1.9)

[Zℎ]l̃,k̃ = ⟨Z ℎ
k̃
,  ℎ

l̃
⟩L2(ℬR), (6.1.10)

[Iℎ]i,l̃ = ⟨�ℎi ,  ℎl̃ ⟩L2(ℬR). (6.1.11)

Therefore, the artificial boundary matrix and consequently the left-hand side admits

a Galerkin discretization.

We now describe how to assemble and compute the single layer potential matrix,

S. The technique described can also be applied in constructing Z. We follow the

technique of Van and Wood in [104] using a standard quadrature with the midpoint

formula:

[Sℎ]l̃,k̃ = ⟨S ℎ
k̃
,  ℎ

l̃
⟩L2(ℬR)

=

∫
ℬl̃

 ℎ
l̃
(r)

∫
ℬk̃

G(r∣r′) ℎ
k̃
(r′)dr′dr.

If we divide the segments on the artificial boundary as ℬk̃ = (rk̃, rk̃+1) and ℬl̃ =

(r l̃, r l̃+1), we then further define �k̃ =
rk̃+1 + rk̃

2
and �l̃ =

r l̃+1 + r l̃
2

. Now, applying

the quadrature using this midpoint formula, and noting that the basis functions are
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piecewise constant over the segment with a value of 1, for ℬk̃ ∕= ℬl̃ we have

∫
ℬl̃

 ℎ
l̃
(r)

∫
ℬk̃

G(r∣r′) ℎ
k̃
(r′)dr′dr ≈ G(�k̃∣�l̃).

Now considering the case along the diagonal of the matrix S, or when ℬk̃ = ℬl̃, or

�k̃ = �l̃, we will have singularities for the first two terms in the Green’s function

(3.3.7). We will address this as Van and Wood did in [104] and have

∫
ℬl̃

 ℎ
l̃
(r)

∫
ℬk̃

K0(�∣r − r′) ℎ
k̃
(r′)dr′dr ≈ 2

�

∫ �∣ℬl̃∣
2

0

K0(�)d�.

and the remaining terms of the Green’s function in (3.3.7) can be evaluated as de-

scribed in Section 3.5. Also, the above expression can be evaluated exactly as provided

in [1] for the term ∫ x

0

K0(�)d�.

Therefore, we have S as a square, dense boundary element matrix of size l̃ × k̃.

This matrix is invertible and each entry element will have a real and imaginary

portion, if we include the third term of the Green’s function in (3.3.7). The same

holds for the matrices Z and I. These three matrices will ultimately determine the

artificial boundary matrix, Q, as described in (6.1). Because the dimensions of Q

are not the same as the stiffness, mass, and boundary matrices, we can standardize

it to the other dimensions using a process described in detail by Jin in [55]. The

difference between the artificial boundary matrix and the boundary matrix is that

the artificial boundary matrix reflects the fact that each boundary element interacts

with every other boundary element, hence the dense square matrix. The boundary

matrix, however, reflects the fact that each boundary element interacts only with

adjacent boundary elements.
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In analyzing the right-hand side of the equation given by (6.1.7), we first note as

in [104] that ũn+1 ≈∑N
i=1 ũ

n+1
i �ℎi , so

�2

∫
ΩR

"rũ
n+1�ℎj dxdy ≈

N∑
i=1

ũn+1

∫
ΩR

"r�
ℎ
i �

ℎ
j dxdy =

N∑
i=1

[M ]jiũ
n+1
i . (6.1.12)

Similarly, we have ˜̇un+1 ≈∑N
i=1

˜̇un+1
i �ℎi , which implies we also have the terms

�

�
�t
�2

∫
S

ũn+1�ℎj dℓ ≈
�

�
�t
�2

N∑
i=1

ũn+1

∫
S

�ℎi �
ℎ
j dℓ =

�

�
�t
�2

N∑
i=1

[P ]jiũ
n+1
i . (6.1.13)

and

−�
�

∫
S

˜̇un+1�ℎj dℓ ≈
N∑
i=1

˜̇un+1
i

∫
S

�ℎi �
ℎ
j dℓ = −�

�

N∑
i=1

[P ]ji ˜̇u
n+1
i (6.1.14)

Likewise, we can discretize the following term as:

∫
ℬR

(
∂uinc,n+1

∂n
)�ℎj dℓ =

∣∣ℬRj ∣∣
2

∂uinc,n+1(�j, (n+ 1)�t)

∂n
, (6.1.15)

where
∣∣ℬRj ∣∣ is the length of the discretized segment on the artificial boundary, �j

is the midpoint of the discretized segment, and (n + 1)�t is the time of evaluation.

These also apply in discretizing the following term as:

−
∫
ℬR
TRuinc,n+1�ℎj dℓ = −

∣∣ℬRj ∣∣
2
TRuinc,n+1(�j, (n+ 1)�t)

= −
∣∣ℬRj ∣∣

2

{
S−1(

1

2
I +D)uinc,n+1(�j, (n+ 1)�t)

}
= −

∣∣ℬRj ∣∣
2

{
S−1

[1
2
uinc,n+1(�j, (n+ 1)�t)

+

∫
ℬR
uinc,n+1(r′)

∂G(�j∣r′)

∂r′ dr′]}
= −

∑ ∣∣ℬRj ∣∣
2

{
S−1

[1
2
uinc,n+1(�j, (n+ 1)�t)

+
∑
∣ℬRk ∣uinc,n+1(�k, (n+ 1)�t)

∂G(�j∣(�k)
∂n′

]}
. (6.1.16)
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We further note in the previous cases that

∂uinc,n+1(�j, (n+ 1)�t)

∂n
= ∇uinc,n+1 ⋅ n̂�j ,

∂G(�j∣(�k)
∂n′

= ∇G ⋅ n̂�k ,

for outward unit normal vectors to the boundary n̂�j and n̂�k .

Furthermore, to analyze the term

∫
ℬR

ΨRũ
s,n+1(r)�ℎj dℓ, we have

∫
ℬR

ΨRũ
s,n+1(r)�ℎj dℓ ≈

∣∣ℬRj ∣∣
2

ΨRũ
s,n+1(�j),

where

ΨRũ
s,n+1(�j) = S−1

{
�2

∫∫
UR
ũs,n+1(r′)G(�j∣r′)dr′

− 1

A

∫
Γext

[
Aũs,n+1(r′)− ˜̇us,n+1(r′)

]
∂G(�j∣r′)

∂y′
dx′
}
. (6.1.17)

We will separately analyze the integral term associated with the exterior domain,

UR, and the integral term associated with the impedance plane, Γext. The approaches

are similar.

For the first integral term, we divide the exterior domain into a triangular mesh

with a sufficient number of triangles (denoted M). Even though the exterior domain

will not have to be very large, because the scattered field rapidly diminishes in value

away from the cavity, it is still important to ensure we have a sufficient number of

triangles to ensure convergence. Each triangle, denoted Δk, has a centroid, denoted

Λk, and an area, denoted ∣Δk∣. We then fix r′ = Λk and approximate this integral
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term as:

�2

∫∫
UR
ũs,n+1(r′)G(�j∣r′)dr′ ≈ �2

M∑
k=1

∣Δk∣G(�j∣Λk)ũ
s,n+1(Λk). (6.1.18)

We note that in approximating ũs,n+1(Λk) with the Newmark scheme, we have

ũs,n+1(Λk) = us,n(Λk) + �tu̇s,n(Λk) +
(�t)2

2
(1− 2�)üs,n(Λk),

which requires precomputation of the values of the scattered field us,n at Λk. Thus,

using the integral representation in (3.2.10), we have:

us,n(Λk) = �2

∫∫
UR
G(Λk∣r′)ũs,n(r′)dr′

− 1

A

∫
Γext

[
Aũs,n+1(r′)− ˜̇us,n+1(r′)

]
∂G(Λk∣r′)

∂nr′
dr′

+

∫
ℬR

(
G(Λk∣r′)

∂un(r′)

∂nr′
− un(r′)

∂G(Λk∣r′)

∂nr′

)
d�′.

Using the previous techniques, we can estimate us,n(Λk) as follows:

us,n(Λk) ≈ �2
∑

Δn,Λk /∈Δn

∣Δn∣G(Λk∣Λn)ũs,n(Λn) (6.1.19)

+ �2ũs,n(Λn)
{1

2
ΔBase

1

2�

2

�

∫ �ℎ′
2

0

K0(�)d� + ∣Δk∣Grem(Λk∣Λk)
}

(6.1.20)

+
∑
j=1

∣∣ℬRj ∣∣ {G(Λk∣�j)
∂un(�j)

∂nr′
− un(�j)

∂G(Λk∣�j)
∂nr′

}
(6.1.21)

− 1

A

∑
ℓ=1

∣Γextℓ ∣
{
Aũs,n+1(�ℓ)− ˜̇us,n+1(�ℓ)

}∂G(Λk∣�ℓ)
∂y′

. (6.1.22)

The first term in the estimation above, (6.1.19), is similar to the previous exterior

discretization, but it does not include the term when Λk = Λn. The second term

(6.1.20) addresses this singularity by evaluating the first term of the Green’s function
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as previously described, and then evaluating the remaining terms of the Green’s

function, taking into account the singular behavior. In this term, ΔBase denotes the

length of the base of the triangle, and ℎ′ denotes the height of the triangle. The third

term, (6.1.21), is the discretization along the artificial boundary, where un denotes

the value of the scattered field as computed in the interior. The fourth term (6.1.22)

is the discretization of the impedance plane.

Once us,n(Λk) is computed, we then compute:

üs,n(Λk) = �2(us,n(Λk)− ũs,n(Λk)),

u̇s,n(Λk) = ˜̇us,n(Λk) + �t
üs,n(Λk),

so that ũs,n+1(Λk) and ˜̇us,n+1(Λk) can be computed as desired.

Similarly, for the second integral term in (6.1.17), we can divide Γext into sufficient

segments to obtain the approximation:

− 1

A

∫
Γext

[
Aũs,n+1(r′)− ˜̇us,n+1(r′)

]
∂G(�j∣r′)

∂y′
dx′ ≈

− 1

A

L∑
ℓ=1

∣Γextℓ ∣
[
Aũs,n+1(�ℓ)− ˜̇us,n+1(�ℓ)

]
∂G(�j∣�ℓ)

∂y′
. (6.1.23)

Using the same approach as with the first integral expression, in order to get

ũs,n+1(�ℓ) and ˜̇us,n+1(�ℓ), we again utilize (3.2.10) to get:

us,n(�ℓ) ≈ �2
∑
n=1

∣Δn∣G(�ℓ∣Λn)ũs,n(Λn) (6.1.24)

+
∑
j=1

∣∣ℬRj ∣∣ {G(�ℓ∣�j)
∂un(�j)

∂nr′
− un(�j)

∂G(�ℓ∣�j)
∂nr′

}
(6.1.25)

− 1

A

∑
m=1

∣Γextm∣
{
Aũs,n+1(�m)− ˜̇us,n+1(�m)

}∂G(�m∣�ℓ)
∂y′

. (6.1.26)

The first term in the estimation above, (6.1.24), is similar to the previous exterior dis-
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cretization, and accounts for all terms (where no singularities are present). The second

term, (6.1.25), is the discretization along the artificial boundary, and no singulari-

ties should exist here. The third term (6.1.26) is the discretization of the impedance

plane, and a singularity will exist when �m = �ℓ.

Again, once us,n(�ℓ) is computed, we then compute:

üs,n(�ℓ) = �2(us,n(�ℓ)− ũs,n(�ℓ)),

u̇s,n(�ℓ) = ˜̇us,n(�ℓ) + �t
üs,n(�ℓ),

so that ũs,n+1(Λk) and ˜̇us,n+1(Λk) can be computed from the prediction formulas as

desired.

Thus, the final discretized version of the expression in (6.1.17) is

ΨRũ
s,n+1(�j) = S−1

{
�2
∑
k=1

∣Δk∣G(�j∣Λk)ũ
s,n+1(Λk)

− 1

A

∑
ℓ=1

∣Γextℓ ∣
[
Aũs,n+1(�ℓ)− ˜̇us,n+1(�ℓ)

]
∂G(�j∣�ℓ)

∂y′

}
. (6.1.27)

We note here that S−1 exists as a square, dense matrix, as previously described.

The two discretized integral expressions in the braces will yield a Nseg × 1 matrix,

where Nseg refers to the number of segments used on the artificial boundary. When

multiplied by S−1 , an Nseg × Nseg matrix, this will result in a Nseg × 1 matrix.

Therefore, we multiply the result by the “connectivity” matrix, [Iℎ]
⊤, (see (6.1.11)),

resulting in the desired N × 1 matrix, where N represents the number of nodes in

the interior mesh. This is similar to Copeland, Langer, and Pusch’s discretization

technique used in [20], and also was referred to earlier in Jin in [55].

Hence, combining the discretized approximations in (6.1.12), (6.1.13), (6.1.14),

(6.1.15), (6.1.16), and (6.1.27) generates an approximation for the vector F n+1
j in
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(6.1.7).

We can concisely summarize the time-stepping scheme as follows (this template

is adapted from Van and Wood in [104]) :

1. Form the matrices K,M,P, and Q as defined in (6.1.3) , (6.1.4), (6.1.5), and

(6.1.6). This constitutes the left-hand side of the matrix equation (6.1.2).

Begin the time loop, where n = 0, 1, 2, . . . , N.

2. Compute the predicted values ũs,n+1 (see (3.1.3)) and ˜̇us,n+1 (see (3.1.4)) in the

interior ΩR. These predicted values are based on the finite element solution

computed in the previous time step (see (6.1.2)).

3. Compute the predicted values ũs,n+1 (see (3.1.3)) and ˜̇us,n+1 (see (3.1.4)) in

the exterior UR. These predicted values are based on the exterior solution

computed from the integral representation (the discretized version of (3.2.10))

in the previous time step.

4. Construct the right-hand side vector F n+1
j as defined in (6.1.7).

5. Compute the solution of the matrix equation in (6.1.2). This will be the solution

in the interior of the cavity ΩR.

6. Using the interior solution computed in the previous step (un+1), and noting

that us,n+1 = un+1 − uinc,n+1 along ℬR, compute the solution in the exterior

domain from the integral representation (3.2.10).

7. Correct the solution computed in the interior of the cavity ΩR by computing

ün+1 (see (3.1.6)) and u̇n+1 (see (3.1.7)).

8. Correct the solution computed in the exterior UR by computing üs,n+1 (see

(3.1.6)) and u̇s,n+1 (see (3.1.7)).
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6.2 Numerical Results

We will analyze numerically two separate cavity geometries: a shallow planar

cavity, with dimensions 1 meter wide by 0.25 meters deep; and an overfilled cavity,

with dimensions 1 meter wide by 1 meter deep, with a semicircle protrusion of 0.5

meter radius. Even though the theory presented assumes an overfilled cavity, the

planar cavity results could provide a good approximation, and more importantly will

provide a context for the theory presented. It will also be useful to compare the electric

field depictions as well as the RCS values for both types of cavities. We previously

mentioned that Wang provided numerical results for absorbing boundary conditions

for curved boundaries [108]. Because our assumptions essentially approximate a first

order absorbing boundary condition, this gives us a baseline to help confirm the

accuracy of the depicted fields.

We started with the MATLAB code from Van and Wood in [104] as a foundation

for our results, and adapted it to our boundary conditions and geometries. The

idea is to depict the progression from the PEC case to the IBC case, in which we

would expect to observe the attenuation of the electric field with a more absorbing

boundary condition. For the planar cavity, we considered two cases: a PEC plane

(Γext) with PEC cavity walls (S), and a PEC plane with IBC cavity walls. For the

overfilled cavity, we considered these two cases and added a third case: an IBC plane

with IBC cavity walls. We also wanted to observe the long-term stability in these

field depictions, which will validate the parameters chosen for the stability of the

Newmark scheme.

We will use the following parameters for the Newmark scheme for the numerical

simulations: 
 = 0.95, � = 0.5256, and �t = 0.0625. This ensures that Theorem 5.3.1

is satisfied and the scheme is unconditionally stable. We assume a relative permittivity

of "r = 2 for the filled media in the cavity, which satisfies the assumptions used in the
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proof of Theorem 4.2.3. We assume all permeability values of � to be 1. We assume

the surface impedance values for the IBCs to be � = 0.8 if not explicitly mentioned,

and we will also use � = 0.2 as a comparison for a boundary condition approaching a

PEC surface. Note that � = 0 represents a strict PEC surface.

We assume an incident Gaussian pulse defined as follows:

uinc(x, y, t) = A
4

T
√
�︸ ︷︷ ︸

Amplitude

e−�
2

,

for

� = 4
(t− t0 + x cos �inc + y sin �inc)

T
.

In the numerical simulations for the pulse, we set A = 1, �inc = 90∘(= �/2), T = 2,

and t0 = 3. This time delay of t0 = 3 means at the point (x0, y0) = (0, 0), the Gaussian

pulse will reach its maximum. There are several advantages in using the Gaussian

pulse, one of which is that it is a good approximation of the pulse shape coming from

certain types of lasers and other manmade systems [76]. The depicted electric fields

will be the real portions plotted against time as measured in light meters, which is

the amount of time for light to travel one meter in free-space.

The first set of data is for the shallow planar cavity, depicted along with the

incident wave and observation point at (0, 0), in Figure 8.

The first run is depicted in Figure 9. With the PEC plane and PEC cavity walls as

a benchmark, we observe that the case with IBC enforced at the cavity walls exhibits

more attenuated characteristics. We also observe the stability of the Newmark scheme

over time.

We also want to observe the effects as � → 0, so the subsequent run adjusts

� = 0.2. We would expect the field to begin to exhibit the characteristics of a strict

PEC on the plane and cavity walls. This is clearly evident in Figure 10 with the
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Figure 8. Shallow Planar Cavity (1 meter by 0.25 meters)

second case (PEC plane and IBC cavity walls) showing more oscillatory behavior as

in the strict PEC case. Again, we observe the stability of the Newmark scheme over

time.

It is essential to compute the RCS for any scattering problem, so we generated

plots for two selected frequencies of 289.5 MHz and 480.45 MHz. Not only are we

interested in observing the effects of the changing boundary conditions on the cavity

models, but also are interested in differences between the planar and overfilled cavities

as well. These plots are monostatic in that the transmitter and receiver are collocated

[8]. They depict the RCS values from a normal incidence angle of 90 degrees to 170

degrees as measure from the ground plane. We again use Van and Wood’s code in

[104] to generate our results, in which the time domain scattered field is Fast Fourier

Transformed to obtain the frequency result.

For the first RCS plot at 289.5 MHz in Figure 11, we observe the expected lobing

pattern in both cases. We also observe generally lower RCS values once the IBC is

introduced, particularly for values with an obervation angle less than 140 degrees.
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Figure 10. Shallow Cavity - TM Solution at (0,0) - Eta Point Two
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In the second RCS plot at 480.45 MHz in Figure 12, we observe much more

apparent attenuation of the RCS values as the boundary condition is changed from

a PEC to an IBC, as a significant gap exists between the two cases. This higher

frequency also exhibits the expected lobing patterns, and the PEC plane with IBC

cavity walls exhibits the lowest RCS values.

The second set of data is for the overfilled cavity model depicted along with

the incident wave and observation point of (0, 0) in Figure 13. We point out that the

selected observation point is close to the origin in order to standardize it to the planar

case and see if any differences are observed. For these results, we also include the third

case of the IBC plane and IBC cavity walls. We also include the mesh discretization

used for the interior domain (cavity) (Figure 14) and the exterior domain (Figure 15).

For the first result in Figure 16, we immediately notice the more oscillatory nature

of the electric field. This could be due to a couple of reasons: the overfilled cavity

model is physically deeper and has more material surrounding the observation point.

However, we still observe the most important result; that is, as the boundary condition

changes on both the plane and cavity walls from a PEC to an IBC we clearly see a

progressive attenuation of the depicted fields. Also, this result is truncated at 50 LM

for scaling and ease of observation. The long-term stability is evident for the PEC

plane with IBC cavity walls and the IBC plane with IBC cavity walls. For the PEC

plane with PEC cavity walls, the long-term stability is evident beyond 50 LM but is

not depicted here as it is easier to compare the three cases in this view. The PEC

case is used as a benchmark for comparison, and its stability was studied and proven

by Van and Wood [104].

As with the planar case, we want to observe the effects as � → 0, and this is

shown in Figure 17. Even though the differences between Figure 16 and Figure 17

are more subtle, it still shows that as � → 0, the fields approach the strict PEC
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Figure 13. Overfilled Cavity (1 meter deep; 0.5 meter radius of protrusion)

105



-0.5 0 0.5
-1

-0.5

0

0.5

Figure 14. Interior Domain Mesh - Overfilled Cavity

106



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15. Exterior Domain Mesh - Overfilled Cavity

107



0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

Time (LM)

E
z(V

/m
)

 Electric field at (0,0) with  θ
inc

 = 90

 

 

PEC Plane / PEC Cavity Walls

PEC Plane / IBC Cavity Walls (η = 0.8)

IBC Plane / IBC Cavity Walls (η = 0.8)

Figure 16. Overfilled Cavity - TM Solution - Eta Point Eight

108



behavior. This is evident in that the depiction of the field in the PEC plane with IBC

cavity walls increases in magnitude to follow the strict PEC case. It is also evident

in the IBC plane with IBC cavity walls case in that at approximately 10 LMs, the

oscillatory nature as seen in the strict PEC case is starting to form. The stability is

also observed up to 50 LM, and can be observed beyond 50 LM for the PEC plane

with PEC cavity walls case.

We also observe the RCS plots for the overfilled cavity model, keeping in mind

that we would expect RCS to be affected due to differences in shape and material.

For the first RCS plot at 289.5 MHz in Figure 18, we note that there is little difference

in RCS values for all three cases as they follow the same pattern. We do, however,

start to observe the expected attenuation at observation angles beyond 130 degrees.

We also note the pattern is slightly different than the planar case.

On the other hand, for the RCS plot at 480.45 MHz depicted in Figure 19, we

see a much clearer separation of the three cases. We note the lobing and the clear

attenuation as the IBC is introduced on both the plane and cavity walls. At this

higher frequency, it is also interesting to compare the observations to the planar

cavity model. We note the PEC plane and PEC cavity wall RCS values are generally

lower for the overfilled cavity model than for the planar cavity model.

In summary, the results of the numerical simulation clearly agrees with the the-

ory presented. We observed the expected attenuation of the field as the IBC was

introduced on the plane and cavity walls. We also observed the changes in the RCS

values as the IBC was introduced. The planar cavity model provided a good context

for our theory, but ultimately the overfilled model and its corresponding numerical

results indicate that our mathematical model can be numerically implemented. The

long-term stability of the models was also verified.
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VII. Conclusions and Future Work

7.1 Conclusions

In conclusion, given an incident electromagnetic wave impinging on an overfilled

cavity in an impedance ground plane, we have determined the resulting scattered

fields. Moreover, we have proven that this problem is well-posed and can be im-

plemented through the use of the FEM. We have established a valid mathematical

model for detecting scattered waves from cavities. In particular, we derived an inte-

gral representation and Green’s function for the solution, and used integral operator

theory in establishing well-posedness. A key step in the uniqueness and existence

proofs was analyzing the properties of the Steklov-Poincarè operator. This was im-

portant because an exact series solution does not exist for IBC conditions, and using

already established properties of integral operators helped facilitate this proof. One

advantage of this approach was that we avoided the use of the hypersingular opera-

tor, which can be difficult to numerically evaluate, particularly at the singularities.

Nevertheless, we noticed an elegant connection: the mathematical formulation sets

the foundation for the variational formulation. This, in turn, is the basis for the finite

element analysis, which is used for the numerical simulation. We observed that not

only changing boundary conditions but changing cavity geometries had an effect on

the scattered field and the RCS values.

We also have two additional contributions. In constructing the finite element

approximation, we provided a method for numerical implementation that avoids use

of the hypersingular operator. This approach in the literature seems limited and

almost nonexistent. Though the numerical simulation involved a direct analysis and

evaluation of the equations of the integral representation, this method may be more

efficient when fully implemented. Also, we were able to apply and refine previous
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research for parameter requirements to ensure unconditional stability for arbitrary

time steps for our application of the Newmark scheme.

One of the most important observations involved the discretization of the Newton

potential terms, one of which was the infinite space, UR, above the cavity opening

(see (3.4.8)). We previously mentioned that this term results from the inhomogeneity

in the PDE, and just requires proper discretization, as the finite element method is

not used in this portion. During the numerical implementation, UR was relatively

small (2 meters wide by 1 meter long; see Figure 15), as the scattered field becomes

quite small and negligible outside of this region. However, the real breakthrough in

the research came when it was discovered that the solution did not converge until a

sufficient number of elements were generated for this region. We believe this might be

due to the fact that we were working with the constant �2, which had an extremely

large value of almost 500. As a result, when discretizing this portion of the Newton

potential, even though the finite element method or adaptive mesh refinements are not

used, this refinement may have helped scale the problem and avoid solution “blow up”

at the appropriate steps. This is an important consideration in future applications

and extensions of this work in the time domain.

7.2 Future Work

It is obvious that this research has a lot of applications and opens up many avenues

for future work. Considering our general problem statement, we only investigated the

TM polarization case, but the TE polarization case can be explored as well. Also, this

problem can be translated into three dimensions, which would not only increase its

applicability, but also be easier to work with in terms of a simpler Green’s function.

This was a direct scattering problem, but the IED detection application lends itself

well to an inverse scattering problem. That is, given a scattered wave, determine the
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properties of the scattering object. Inverse scattering theory is a popular and growing

area of research.

Considering the numerical analysis of the problem, we only generated the real

portion of the scattered field, but future research could also look at the imaginary

portions of the field generated due to the nature of the Green’s function. Also,

RCS plots could be analyzed at several other frequencies. Several of the parameters

could also be modified and analyzed for their effects to include: different values

of "r (to include real and imaginary) to reflect different types of cavity material;

different values of the surface impedance �; changing the angle of incidence to see

its effects on the scattered field; changing the observation points along and within

the artificial boundary; different overfilled cavity geometries (shallow versus deep

cavities); changing the stability parameters used in the Newmark scheme to include

differing time steps; and considering the effects of a Gaussian pulse versus a continuous

wave. Obviously, there are many areas here that could be expanded and analyzed.

We mentioned that the IBC assumption we developed approximated a first order

boundary condition, but a more robust assumption could be made involving the use

of a Fourier transform. The Green’s function itself for an IBC can be explored further,

as Hein did thoroughly in his dissertation [42]. It was clear from the literature that

there is little consistency in the Green’s function expressions for an IBC. There are

multiple representations for different terms, and each are quite detailed. The main

difficulty seems to be in numerical implementation and the evaluation of singularities

when using a boundary integral method. More standardization in this area would be

very beneficial.

As mentioned during the finite element analysis, we only provided a priori esti-

mates, but adaptive mesh refinement could be used to generate a posteriori estimates,

or higher polynomial degree basis functions could even be used to help refine the so-
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lution. For the finite element approximation we describe, the idea was to use it as

a foundation for the numerical implementation. However, we built upon an existing

code which more directly approximated the integral representations. The advantage

was that this did not require inverse matrix operations, but the disadvantage was that

the calculations involved hypersingular expressions with multiple derivatives, where

singularities were difficult to assess. The finite element approximation we describe

could be implemented as it avoids use of hypersingular expressions, and could possibly

be more stable and accurate.

Finally, it is without question that this research has opened several areas for

further exploration that could greatly benefit not only the academic discipline but

also the military. Given the importance of radar applications and the importance of

object detection and analysis in today’s military, this research can be applied in many

ways. Clearly, then, this work sets the foundation for extremely important topics to

today’s warfighter on the battlespace.
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Appendix A. Derivations

Because we assume a constant surface impedance for our impedance boundary

conditions in the time domain, this assumption resembles a first-order absorbing

boundary condition according to Jin (see [55]) :

n̂×
[

1

�
∇×E(r, t)

]
+ Yc

∂

∂t

[
n̂× n̂×E(r, t)

]
= 0 for r ∈ S ∪ Γext × (0,∞).

Here, Yc =

√
"

�
is defined as the intrinsic admittance of the infinite medium and

n̂ = ŷ as the outward unit normal to the boundary Γext. For derivation purposes, we

limit the case to the impedance plane Γext, but note that the extension to S ∪ Γext

would require a general definition for n̂.

For the TM case, we have ∇×E(r, t) = x̂
∂

∂y
Ez − ŷ

∂

∂x
Ez, then

n̂×
[

1

�

(
x̂
∂

∂y
Ez − ŷ

∂

∂x
Ez

)]
= ẑ

(
− 1

�

∂

∂y
Ez

)
n̂× n̂×E(r, t) = ẑ

(
− Ez

)
⎫⎬⎭ =⇒

ẑ

(
− 1

�

∂

∂y
Ez

)
+ Yc

∂

∂t

[
ẑ
(
− Ez

)]
= 0

ẑ

[
− 1

�

∂

∂y
Ez + Yc

∂

∂t

(
− Ez

)]
= 0

− 1

�

∂

∂y
Ez = Yc

∂

∂t

(
Ez
)
s

− 1

�

∂Ez
∂y

=
1

�

∂Ez
∂t

.
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